Skip to main content
Log in

Optimization of Cutting Parameters and Result Predictions with Response Surface Methodology, Individual and Ensemble Machine Learning Algorithms in End Milling of AISI 321

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Optimizing the parameters in the milling method is important in terms of cost, energy, and time. The forces that arise during milling cause undesirable results, such as tool wear and energy loss. In this study, cutting parameters were optimized during the milling of AISI 321 material. Cutting speed (60, 70, 80 m/min), feed per tooth (0.04, 0.05, 0.06 mm/tooth), and depth of cut (0.25, 0.5, 0.75 mm) were selected as input parameters. Cutting force in the X and Y axes and the surface roughness were selected as the output parameters. Optimum parameters (60.80 m/min for cutting speed, 0.04 mm/tooth for feed per tooth, and 0.25 mm for depth of cut) were found using response surface methodology. The effect of cutting parameters was calculated by analysis of variance. The most influential parameters were found, depth of cut as 87.49% for cutting force on the X-axis, 86.48% on the Y-axis, and for surface roughness, the cutting speed with 36.48%. Prediction models are compared to choose the best model. Individual (Neural network, decision tree, and k-nearest neighbor algorithms) and ensemble methods (vote) from machine learning and response surface methodology from statistical methods were used for models. The error rates of the models were compared according to the mean absolute percentage error performance criterion. The lowest MAPE values were obtained with the vote method 11.163% in the X-axis force, the artificial neural network algorithm with 7.749% in the Y-axis force, and RSM with 0.93% in the surface roughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

RSM:

Response surface methodology

ANOVA:

Analysis of variance

MAPE:

Mean absolute percentage error

ANN:

Artificial neural network

SVR:

Support vector regression

DT:

Decision tree

K-NN:

K-nearest neighbor

F x :

X-axis force (N)

F y :

Y-axis force (N)

Ra:

Surface roughness (µm)

Vc:

Cutting speed (m/min)

fz:

Feed per tooth (mm/tooth)

Ap:

Depth of cut (mm)

HB:

Brinell hardness

MLP:

Multilayer perceptron neural network

DF:

Degree of freedom

Adj SS:

Adjusted sum of squares

Adj MS:

Adjusted mean squares

References

  1. Gale, W.F.; Totemeier, T.C.: Smithells Metals Reference Book. Heinemann, Butterworth (2004)

    Google Scholar 

  2. Zhaohui, D.; Lishu, L.; Wenliang, H.; Linlin, W.; Shichun, L.: Modelling of carbon utilisation efficiency and its application in milling parameters optimization. Int. J. Prod. Res. (2020). https://doi.org/10.1080/00207543.2019.1633026

    Article  Google Scholar 

  3. Anburaj, R.; Kumar, M.P.: Experimental studies on cryogenic CO2 face milling of inconel 625 superalloy. Mater. Manuf. Processes (2020). https://doi.org/10.1080/10426914.2020.1866199

    Article  Google Scholar 

  4. Bag, R.; Panda, A.; Sahoo, A.K., et al.: Sustainable high-speed hard machining of AISI 4340 steel under dry environment. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-07094-9

    Article  Google Scholar 

  5. Selvakumar, S.; Sreebalaji, V.S.; Ravikumar, K.: Machinability analysis and optimization in micro turning on tool wear for titanium alloy. Mater. Mater Manuf. Processes (2021). https://doi.org/10.1080/10426914.2020.1866198

    Article  Google Scholar 

  6. Siddiquee, A.N.; Khan, Z.A.; Goel, P.; Kumar, M.; Agarwal, G.; Khan, N.Z.: Optimization of deep drilling process parameters of AISI 321 steel using taguchi method. Proc. Mater. Sci. (2014). https://doi.org/10.1016/j.mspro.2014.07.195

    Article  Google Scholar 

  7. Vereschaka, A.A.; Grigoriev, S.; Sitnikov, N.N.; Bublikov, J.I.; Batako, A.D.L.: Effect produced by thickness of nanolayers of multilayer composite wear-resistant coating on tool life of metal-cutting tool in turning of steel AISI 321. Proc. CIRP (2018). https://doi.org/10.1016/j.procir.2018.08.236

    Article  Google Scholar 

  8. Pekşen, H.; Kalyon, A.: Optimization and measurement of flank wear and surface roughness via Taguchi based grey relational analysis. Mater. Manuf. Processes (2021). https://doi.org/10.1080/10426914.2021.1926497

    Article  Google Scholar 

  9. Ross, N.S.; Sheeba, P.T.; Jebaraj, M.; Stephen, H.: Milling performance assessment of Ti–6Al–4V under CO2 cooling utilizing coated AlCrN/TiAlN insert. Mater. Manuf. Processes (2021). https://doi.org/10.1080/10426914.2021.2001510

    Article  Google Scholar 

  10. Li, B.; Zhang, S.; Fang, Y.; Wang, J.; Lu, S.: Effects of cutting parameters on surface quality in hard milling. Mater. Manuf. Processes (2019). https://doi.org/10.1080/10426914.2019.1675888

    Article  Google Scholar 

  11. Zhang, H.P.; Ding, C.L.; Shi, R.X.; Liu, R.H.: Optimization of technological parameters and application conditions of CMQL in high-speed milling 300M steel. Integr. Ferroelectr. (2021). https://doi.org/10.1080/10584587.2021.1911306

    Article  Google Scholar 

  12. Choudhury, M.R.; Rao, G.S.; Debnath, K.; Mahapatra, R.N.: Analysis of force, temperature, and surface roughness during end milling of green composites. J. Nat. Fibers (2021). https://doi.org/10.1080/15440478.2021.1875350

    Article  Google Scholar 

  13. Zhang, X.; Yu, T.; Li, M.; Wang, Z.: Effect of machining parameters on the milling process of 2.5 DC/SiC ceramic matrix composites. Mach. Sci. Technol. (2020). https://doi.org/10.1080/10910344.2019.1636271

    Article  Google Scholar 

  14. Çakıroğlu, R.: Machinability analysis of inconel 718 superalloy with AlTiN-coated carbide tool under different cutting environments. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-05626-3

    Article  Google Scholar 

  15. Karabulut, Ş; Çinici, H.; Karakoç, H.: Experimental investigation and optimization of cutting force and tool wear in milling Al7075 and open-cell SiC foam composite. Arab. J. Sci. Eng. (2016). https://doi.org/10.1007/s13369-015-1991-4

    Article  Google Scholar 

  16. Badiger, P.V.; Desai, V.; Ramesh, M.R., et al.: Cutting forces, surface roughness and tool wear quality assessment using ANN and PSO approach during machining of MDN431 with TiN/AlN-coated cutting tool. Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-019-03783-0

    Article  Google Scholar 

  17. Abbas, A.T.; Pimenov, D.Y.; Erdakov, I.N., et al.: Optimization of cutting conditions using artificial neural networks and the Edgeworth-Pareto method for CNC face-milling operations on high-strength grade-H steel. Int. J. Adv. Manuf. Technol. (2019). https://doi.org/10.1007/s00170-019-04327-4

    Article  Google Scholar 

  18. Jurkovic, Z.; Cukor, G.; Brezocnik, M.; Brajkovic, T.A.: Comparison of machine learning methods for cutting parameters prediction in high speed turning process. J. Intell. Manuf. (2018). https://doi.org/10.1007/s10845-016-1206-1

    Article  Google Scholar 

  19. Sun, Y.; Yang, G.; Wen, C.; Zhang, L.; Sun, Z.: Artificial neural networks with response surface methodology for optimization of selective CO2 hydrogenation using K-promoted iron catalyst in a microchannel reactor. J. CO2 Util. (2018). https://doi.org/10.1016/j.jcou.2017.11.013

    Article  Google Scholar 

  20. Daniel, S.A.A.; Pugazhenthi, R.; Kumar, R.; Vijayananth, S.: Multi objective prediction and optimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and Taguchi -grey relational analysis. Defence Technol. (2019). https://doi.org/10.1016/j.dt.2019.01.001

    Article  Google Scholar 

  21. Segreto, T.; D’Addona, D.; Teti, R.: Tool wear estimation in turning of Inconel 718 based on wavelet sensor signal analysis and machine learning paradigms. Prod. Eng. (2020). https://doi.org/10.1007/s11740-020-00989-2

    Article  Google Scholar 

  22. Pimenov, D.Y.; Bustillo, A.; Mikolajczyk, T.: Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. J. Intell. Manuf. (2018). https://doi.org/10.1007/s10845-017-1381-8

    Article  Google Scholar 

  23. Balasubramanian, A.N.; Yadav, N.; Tiwari, A.: Analysis of cutting forces in helical ball end milling process using machine learning. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.02.098

    Article  Google Scholar 

  24. Correa, M.; Bielza, C.; Ramirez, M.D.J.; Alique, J.R.: A Bayesian network model for surface roughness prediction in the machining process. Int. J. Syst. Sci. (2008). https://doi.org/10.1080/00207720802344683

    Article  MATH  Google Scholar 

  25. Gupta, A.K.: Predictive modeling of turning operations using response surface methodology, artificial neural networks, and support vector regression. Int. J. Prod. Res. (2010). https://doi.org/10.1080/00207540802452132

    Article  Google Scholar 

  26. Pimenov, D.Y.; Abbas, A.T.; Gupta, M.K., et al.: Investigations of surface quality and energy consumption associated with costs and material removal rate during face milling of AISI 1045 steel. Int. J. Adv. Manuf. Technol. (2020). https://doi.org/10.1007/s00170-020-05236-7

    Article  Google Scholar 

  27. Natarajan, C.; Muthu, S.; Karuppuswamy, P.: Investigation of cutting parameters of surface roughness for brass using artificial neural networks in computer numerical control turning. Aust. J. Mech. Eng. (2012). https://doi.org/10.1080/14484846.2012.11464616

    Article  Google Scholar 

  28. https://www.azom.com/article.aspx?ArticleID=967 Accessed 10 Nov 2022.

  29. Kuntoğlu, M.; Aslan, A.; Sağlam, H.; Pimenov, D.Y.; Giasin, K.; Mikolajczyk, T.: Optimization and analysis of surface roughness, flank wear and 5 different sensorial data via tool condition monitoring system in turning of AISI 5140. Sensors (2020). https://doi.org/10.3390/s20164377

    Article  Google Scholar 

  30. Şap, E.; Usca, Ü.A.; Gupta, M.K.; Kuntoğlu, M.; Sarıkaya, M.; Pimenov, D.Y.; Mia, M.: Parametric optimization for improving the machining process of cu/mo-sicp composites produced by powder metallurgy. Materials (2021). https://doi.org/10.3390/ma14081921

    Article  Google Scholar 

  31. Kuntoğlu, M.; Aslan, A.; Pimenov, D.Y.; Giasin, K.; Mikolajczyk, T.; Sharma, S.: Modeling of cutting parameters and tool geometry for multi-criteria optimization of surface roughness and vibration via response surface methodology in turning of AISI 5140 steel. Materials (2020). https://doi.org/10.3390/ma13194242

    Article  Google Scholar 

  32. Mang, D.Y.; Abdou, A.B.; Njintang, N.Y., et al.: Application of desirability-function and RSM to optimize antioxidant properties of mucuna milk. Food Meas. (2015). https://doi.org/10.1007/s11694-015-9258-z

    Article  Google Scholar 

  33. Hazir, E.; Ozcan, T.: Response surface methodology integrated with desirability function and genetic algorithm approach for the optimization of CNC machining parameters. Arab. J. Sci. Eng. (2019). https://doi.org/10.1007/s13369-018-3559-6

    Article  Google Scholar 

  34. Torgo, L.; Ribeiro, R.P.; Pfahringer, B.; Branco, P.: SMOTE for Regression. In: Correia L., Reis L.P., Cascalho J. (eds.) Progress in Artificial Intelligence. EPIA 2013. Lect. Notes Comput. Sci (2013). https://doi.org/10.1007/978-3-642-40669-0_33

  35. Kuncheva, I.L.: Combining Pattern Classifiers. Wiley, New Jersey (2004) https://doi.org/10.1002/0471660264

    Book  MATH  Google Scholar 

  36. Öztemel, E.: Yapay Sinir Ağları, 1st edn. Papatya Yayınları, Istanbul (2003)

    Google Scholar 

  37. Mitchell, T.M.: Machine Learning, 1st edn. McGraw-Hill Science, New York (1997)

    MATH  Google Scholar 

  38. Jiawei, H.; Micheline, K.; Jian, P.: Data Mining: Concepts and Techniques. Elsevier, Waltham (2012) https://doi.org/10.1016/C2009-0-61819-5

    Book  MATH  Google Scholar 

  39. Li, Z.; Ma, W.; Yao, S.; Xu, P.; Hou, L.; Deng, G.: A machine learning based optimization method towards removing undesired deformation of energy-absorbing structures. Struct. Multidiscip. Optim. (2021). https://doi.org/10.1007/s00158-021-02896-1

    Article  Google Scholar 

  40. Balaji, S.A.; Baskaran, K.: Design and development of artificial neural networking (ANN) system using sigmoid activation function to predict annual rice production in Tamilnadu. J. Comput. Sci. Eng. Inf. Technol. (2013). https://doi.org/10.5121/ijcseit.2013.3102

    Article  Google Scholar 

  41. Maimon, O.; Rokach, L.: Data Mining and Knowledge Discovery Handbook. Springer, New York (2010) https://doi.org/10.1007/978-0-387-09823-4

    Book  MATH  Google Scholar 

  42. Lewis, C.D.: Industrial and Business Forecasting Methods. Butterworths Publishing, London (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Ozsoy.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demircioglu Diren, D., Ozsoy, N., Ozsoy, M. et al. Optimization of Cutting Parameters and Result Predictions with Response Surface Methodology, Individual and Ensemble Machine Learning Algorithms in End Milling of AISI 321. Arab J Sci Eng 48, 12075–12089 (2023). https://doi.org/10.1007/s13369-023-07642-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07642-x

Keywords

Navigation