Skip to main content
Log in

Effect of Soil-Cutterhead Interface Temperature on the Consolidation and Hardening of Mud Cake Under Multi-factor Conditions

  • RESEARCH ARTICLE - CIVIL ENGINEERING
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

When shield structures pass through cohesive ground, the cutterhead is often blocked by muck, which reduces the tunnelling speed. In addition, due to the continuous thrust of the cutterhead on the soil, the temperature of the soil-cutterhead interface increases, which exacerbates the muck adhesion. This work investigated the effect of temperature on the consolidation and hardening of mud cake by means of a self-made shield tunnelling simulation equipment and proposed relevant indexes for reflecting the consolidation and hardening states of the mud cake. Depending on the heat transfer mechanism between cutterhead and soil, the effects of soil parameters (soil type, consistency index), excavation parameters (support pressure, cutterhead rotation speed) and foaming agent on the temperature development at the soil-cutterhead interface were analyzed experimentally. Results indicate that moisture content and fall cone penetration were closely related to temperature variation, and the increase of interface temperature intensified the consolidation and hardening of the mud cake. The interface temperature increased with the increase of the consistency index, support pressure and cutterhead rotation speed. Compared with pure clay, the tunnelling interface of sandy clay was rough, and the interface temperature increased significantly. The injection of foaming agent could effectively hinder the rise of interface temperature and reduce the adhesion area and degree of hardening of mud cake. This study has guiding significance for understanding the formation and development of mud cake on the shield in the process of shield construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Cui, J.; Broere, W.; Lin, D.: Underground space utilisation for urban renewal. Tunn. Undergr. Space Technol. 108, 103726 (2021). https://doi.org/10.1016/j.tust.2020.103726

    Article  Google Scholar 

  2. Zhu, H.H.; Wang, D.Y.; Shi, B.; Wang, X.; Wei, G.Q.: Performance monitoring of a curved shield tunnel during adjacent excavations using a fiber optic nervous sensing system. Tunn. Undergr. Space Technol. 124, 104483 (2022). https://doi.org/10.1016/j.tust.2022.104483

    Article  Google Scholar 

  3. Huang, X.; Liu, Q.; Chen, L.; Pan, Y.; Liu, B.; Kang, Y.; Liu, X.: Cutting force measurement and analyses of shell cutters on a mixshield tunnelling machine. Tunn. Undergr. Space Technol. 82, 325–345 (2018). https://doi.org/10.1016/j.tust.2018.08.052

    Article  Google Scholar 

  4. Hollmann, F.S.; Thewes, M.: Assessment method for clay clogging and disintegration of fines in mechanised tunnelling. Tunn. Undergr. Space Technol. 37, 96–106 (2013). https://doi.org/10.1016/j.tust.2013.03.010

    Article  Google Scholar 

  5. Thewes, M., Burger, W.: Clogging of TBM drives in clay—identification and mitigation of risks. Undergr. Space (2005)

  6. Fountaine, E.R.: Investigations into the mechanism of soil adhesion. J. Soil Sci. 5, 251–263 (1954). https://doi.org/10.1111/j.1365-2389.1954.tb02191.x

    Article  Google Scholar 

  7. Feinendegen, M., Ziegler, M., Spagnoli, G., T Fernández-Steeger, Stanjek, H.: A new laboratory test to evaluate the problem of clogging in mechanical tunnel driving with EPB-shields. In: ISRM International Symposium-Eurock (2010)

  8. Moore, C.A.; Mitchell, J.K.: Electromagnetic forces and soil strength. Géotechnique 24, 627–640 (1974). https://doi.org/10.1680/geot.1974.24.4.627

    Article  Google Scholar 

  9. Cui, J.; Xu, G.; Fang, Y.; Chen, Z.; Yao, Z.; Tao, L.; Qu, L.: Experimental assessment of soil/metal interface adhesion behaviours of EPB shield machines. Tunn. Undergr. Space Technol. 131, 104835 (2023). https://doi.org/10.1016/j.tust.2022.104835

    Article  Google Scholar 

  10. Messerklinger, S.; Zumsteg, R.; Puzrin, A.M.: A new pressurized vane shear apparatus. Geotech. Test. J. 34, 112–121 (2011)

    Google Scholar 

  11. Tsubakihara, Y.; Kishida, H.; Nishiyama, T.: Friction between cohesive soils and steel. Soils Found. 33, 145–156 (1993). https://doi.org/10.3208/sandf1972.33.2_145

    Article  Google Scholar 

  12. Zimnik, A.R., Van Baalen, L.R., Verhoef, P.N., Ngan-Tillard, D.J.: The adherence of clay to steel surfaces. In: ISRM International Symposium. OnePetro (2000)

  13. Sass, I.; Burbaum, U.: A method for assessing adhesion of clays to tunneling machines. Bull. Eng. Geol. Environ. 68, 27–34 (2009). https://doi.org/10.1007/s10064-008-0178-6

    Article  Google Scholar 

  14. Zhu W., Ju S.: Cause and countermeasure of mud cake (secondary rock) in shield machine driving. Undergr. Eng. Tunn. 25–29 (2003)

  15. Kooistra, A., Verhoef, P.N.W., Broere, W., Ngan-Tillard, D.J.M., van Tol, A.F.: Appraisal of stickiness of natural clays from laboratory tests. Publ. Appl. Earth Sci. Sect. Eng. Geol. (1998)

  16. Mei, Y.; Zhou, D.; Gong, H.; Ke, X.; Xu, W.; Shi, W.: Study on comprehensive technology of preventing mud cake of large diameter slurry shield in composite stratum. Buildings 12, 1555 (2022). https://doi.org/10.3390/buildings12101555

    Article  Google Scholar 

  17. Qiu, T.; Zhang, Y.: Experimental research on the adhesion characteristics of clay to structures with different materials. Geofluids 2021, 1–11 (2021). https://doi.org/10.1155/2021/3794889

    Article  Google Scholar 

  18. von Glehn, F.H.; Bluhm, S.J.: Practical aspects of the ventilation of high-speed developing tunnels in hot working environments. Tunn. Undergr. Space Technol. 15, 471–475 (2000). https://doi.org/10.1016/S0886-7798(01)00016-5

    Article  Google Scholar 

  19. Wang, F.; Luo, F.; Huang, Y.; Zhu, L.; Hu, H.: Thermal analysis and air temperature prediction in TBM construction tunnels. Appl. Therm. Eng. 158, 113822 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113822

    Article  Google Scholar 

  20. Fu, J.; Wu, D.; Lan, H.; Ji, Z.; Li, W.; Xia, Y.: Online monitoring and analysis of TBM cutter temperature: a case study in China. Measurement 174, 109034 (2021). https://doi.org/10.1016/j.measurement.2021.109034

    Article  Google Scholar 

  21. Tsuchida, T.; Kobayashi, M.; Mizukami, J.: Effect of aging of marine clay and its duplication by high temperature consolidation. Soils Found. 31, 133–147 (1991). https://doi.org/10.3208/sandf1972.31.4_133

    Article  Google Scholar 

  22. Abuel-Naga, H.M.; Bergado, D.T.; Ramana, G.V.; Grino, L.; Rujivipat, P.; Thet, Y.: Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature. J. Geotech. Geoenviron. Eng. 132, 902–910 (2006). https://doi.org/10.1061/(ASCE)1090-0241(2006)132:7(902)

    Article  Google Scholar 

  23. Qiu, T.; Liu, C.; Zhong, X.; Zhu, Y.: Experimental research on the impact of temperature on the adhesion characteristics of soil-structure interface. Geofluids 2020, 1–9 (2020). https://doi.org/10.1155/2020/6675576

    Article  Google Scholar 

  24. Qiu, T.; Zhang, Y.: Experimental research on the impact of interface temperature on the adhesion properties of clay under the condition of different contacting time. Geofluids 2021, 1–11 (2021). https://doi.org/10.1155/2021/4138102

    Article  Google Scholar 

  25. Zhang, Z.X.; Kou, S.Q.; Lindqvist, P.-A.: In-situ measurements of TBM cutter temperature in Äspö Hard Rock Laboratory, Sweden. Int. J. Rock Mech. Min. Sci. 38, 585–590 (2001). https://doi.org/10.1016/S1365-1609(01)00021-1

    Article  Google Scholar 

  26. Choi, S.-W.; Chang, S.-H.; Park, Y.-T.; Lee, G.-P.; Bae, G.-J.: A experimental study on the loads and temperature acting on the shaft of a disc cutter during linear rock cutting test. J. Korean Tunn. Undergr. Space Assoc. (2013). https://doi.org/10.9711/KTAJ.2013.15.3.237

    Article  Google Scholar 

  27. Zhou, J.; Xu, J.; Yu, L.; Luo, L.: Microscopic mechanism regarding permeability anisotropy of kaolin-montmorillonite mixed clays. Chin. J. Geotech. Eng. 41, 1005–1013 (2019)

    Google Scholar 

  28. Chen, Z.; Bezuijen, A.; Fang, Y.; Wang, K.; Deng, R.: Experimental study and field validation on soil clogging of EPB shields in completely decomposed granite. Tunn. Undergr. Space Technol. 120, 104300 (2022). https://doi.org/10.1016/j.tust.2021.104300

    Article  Google Scholar 

  29. Yang, Y.; Li, X.; Jin, D.; Su, W.; Mao, J.: Transient temperature field model for a cutterhead during slurry shield tunneling. Tunn. Undergr. Space Technol. 117, 104128 (2021). https://doi.org/10.1016/j.tust.2021.104128

    Article  Google Scholar 

  30. Larsson, R.; Åhnberg, H.: On the evaluation of undrained shear strength and preconsolidation pressure from common field tests in clay. Can. Geotech. J. 42, 1221–1231 (2005). https://doi.org/10.1139/t05-031

    Article  Google Scholar 

  31. Tsytovich, N.A.; Zaretsky, Yu.K.: The development of the theory of soil consolidation in the U.S.S.R 1917–1967. Géotechnique. 19, 357–375 (1969). https://doi.org/10.1680/geot.1969.19.3.357

    Article  Google Scholar 

  32. Ebato, M.: Evaluation of soil hardness in paddy fields by cone penetrometer as a simple soil physical diagnosis method. Agric. Inf. Res. 29, 24–39 (2020). https://doi.org/10.3173/air.29.24

    Article  Google Scholar 

  33. Thewes, M.; Hollmann, F.: Assessment of clay soils and clay-rich rock for clogging of TBMs. Tunn. Undergr. Space Technol. 57, 122–128 (2016). https://doi.org/10.1016/j.tust.2016.01.010

    Article  Google Scholar 

  34. Wood, D.M.: Some fall-cone tests. Géotechnique. 35, 64–68 (1985). https://doi.org/10.1680/geot.1985.35.1.64

    Article  Google Scholar 

  35. Kai, W.: Research on the comprehensive evaluation method for the risk of clay clogging and prevention measures, https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD202201&filename=1022460674.nh (2021)

  36. Ministry of Housing and Urban and Rural Development of the People’ s Republic of China: Code for Design of Building Foundation GB50007–2011. China Architecture & Building Press, Beijing, China (2011)

  37. Campanella, R.G.; Mitchell, J.K.: Influence of temperature variations on soil behavior. J. Soil Mech. Found. Div. 94, 709–734 (1968). https://doi.org/10.1061/JSFEAQ.0001136

    Article  Google Scholar 

  38. Shao, Y.X.; Shi, B.; Gu, K.; Tang, C.S.; Gao, L.: Direct shear test for temperature effect on shear strength of unsaturated clayey soils. J. Eng. Geol. 19, 137–142 (2011)

    Google Scholar 

  39. Burghignoli, A.; Desideri, A.; Miliziano, S.: A laboratory study on the thermomechanical behaviour of clayey soils. Can. Geotech. J. 37, 764–780 (2000). https://doi.org/10.1139/t00-010

    Article  Google Scholar 

  40. Peters-Lidard, C.D.; Blackburn, E.; Liang, X.; Wood, E.F.: The effect of soil thermal conductivity parameterization on surface energy fluxes and temperatures. J. Atmospheric Sci. 55, 1209–1224 (1998). https://doi.org/10.1175/1520-0469(1998)055%3c1209:TEOSTC%3e2.0.CO;2

    Article  Google Scholar 

  41. Wan, Z.; Li, S.; Yuan, C.; Zhao, S.; Wang, M.; Lu, Q.; Hou, W.: Soil conditioning for EPB shield tunneling in silty clay and weathered mudstone. Int. J. Geomech. 21, 06021020 (2021). https://doi.org/10.1061/(ASCE)GM.1943-5622.0002119

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (No. 52078428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, K., Pan, X., Lian, M. et al. Effect of Soil-Cutterhead Interface Temperature on the Consolidation and Hardening of Mud Cake Under Multi-factor Conditions. Arab J Sci Eng 48, 12931–12943 (2023). https://doi.org/10.1007/s13369-023-07634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07634-x

Keywords

Navigation