Skip to main content
Log in

Analytical Study on the Impedance of Radial Heterogeneous Viscoelastic Soil with Two Different Methods

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The influence of the vertical and horizontal impedances of soil radial heterogeneity was studied theoretically based on the series convergence and transfer matrix methods. The soil around the pile was assumed to be composed of two homogeneous soil zones in three-dimensional axisymmetric space, that is, a disturbed inner boundary zone and an outer semi-infinite undisturbed zone. Moreover, the shear moduli of the inner perturbed and the outer unperturbed zones were correlated with a specific parabolic function. Then, the soil vertical and horizontal impedances in the radially inhomogeneous boundary zone were derived based on the series convergence and transfer matrix methods using the stress and displacement continuity conditions and the infinite boundary condition. Finally, the impedance errors and applicable range of two methods are discussed. The main findings can be categorized as: (1) when analysing a soil radial heterogeneous site, the influence of the shear modulus ratio of the inner and outer zones, the ratio of the thickness of boundary zone to the pile radius, soil density and pile radius should be taken into account; (2) when \(0.8 \le G_{i} /G_{0} \le 1.0\) and \(1 \le t_{m} /r_{0} \le 4\), the error between the series convergence method and transfer matrix method is within 10%, while the error is approximately 15% when \(0.4 \le G_{i} /G_{0} \le 0.7\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zheng, X.Y.; Li, H.B.; Rong, W.D.; Li, W.: Joint earthquake and wave action on the monopile wind turbine foundation: an experimental study. Mar. Struct. 44, 125–141 (2015)

    Google Scholar 

  2. Yan, J.R.; Lu, D.C.; Du, X.L.: Three dimensional nonlinear seismic response analysis of artificial island of Hong Kong-Zhuhai-Macao Bridge project. World Earthq. Eng. 32(1), 161–168 (2016)

    Google Scholar 

  3. Xu, Y.; Zeng, Z.; Wang, Z.; Yan, H.: Seismic study of a widened and reconstructed long-span continuous steel truss bridge. Struct. Infrastruct. Eng 1, 1–11 (2020)

    Google Scholar 

  4. Dai, D.H.; EI Naggar, M.H.; Zhang, N.; Gao, Y.F.: Kinematic response of an end-bearing pile subjected to vertical P-wave considering the three-dimensional wave scattering. Comput. Geotech. 120, 103368 (2020)

    Google Scholar 

  5. Chanda, D.; Saha, R.; Sumanta, H.: Influence of inherent soil variability on seismic response of structure supported on pile foundation. Arab. J. Sci. Eng. 44, 5009–5025 (2019)

    Google Scholar 

  6. Zhang, H.B.; Wang, H.; Li, X.L.; Li, W.C.; Wu, J.Q.; Lv, J.Q.; Song, X.G.; Liu, M.P.: An analysis of floating geogrid-reinforced pile-supported embankments containing deep softened soil. Arab. J. Sci. Eng. 46, 10855–10868 (2021)

    Google Scholar 

  7. Gao, L.; Wang, K.H.; Xiao, S.; Li, Z.Y.; Wu, J.T.: An analytical solution for excited pile vibrations with variable section impedance in the time domain and its engineering application. Comput. Geotech. 73, 170–178 (2016)

    Google Scholar 

  8. Varghese, R.; Boominathan, A.; Banerjee, S.: Stiffness and load sharing characteristics of piled raft foundations subjected to dynamic loads. Soil Dyn. Earthq. Eng. 133, 106177 (2020)

    Google Scholar 

  9. Huang, Y.M.; Wang, P.G.; Zhao, M.; Zheng, C.; Du, X.L.: Dynamic responses of an end-bearing pile subjected to horizontal earthquakes considering water–pile–soil interactions. Ocean Eng. 238, 109726 (2021)

    Google Scholar 

  10. Thanh, S.T.; Minh, H.L.; Samir, K.; Seyedali, M.; Magd, A.W.; Thanh, C.L.: Forecasting of excavation problems for high-rise building in Vietnam using planet optimization algorithm. Sci. Rep. 11, 23809 (2021)

    Google Scholar 

  11. Thanh, S.T.; Minh, H.L.; Magd, A.W.; Thanh, C.L.: Predicting the displacement of diaphragm wall for deep excavation problem on the basing thickly soft soil in an urban area using semi-top-down construction method. Proceedings of the 2nd International Conference on Structural Damage Modelling and Assessment 196, 29–56 (2021).

  12. Gazetas, G.; Dobry, R.: Horizontal response of piles in layered soils. J. Geotech. Eng. 110, 20–40 (1984)

    Google Scholar 

  13. Dezi, F.; Carbonari, S.; Leoni, G.: A model for the 3d kinematic interaction analysis of pile groups in layered soils. Earthq. Eng. Struct. Dyn. 38, 1281–1305 (2009)

    Google Scholar 

  14. Wang, K.H.; Wu, W.B.; Zhang, Z.Q.; Leo, C.J.: Vertical dynamic response of an inhomogeneous viscoelastic pile. Comput. Geotech. 37(4), 536–544 (2010)

    Google Scholar 

  15. Laora, R.D.; Mandolini, A.; Mylonakis, G.: Insight on kinematic bending of flexible piles in layered soil. Soil Dyn. Earthq. Eng. 43, 309–322 (2012)

    Google Scholar 

  16. Anoyatis, G.; Di, L.R.; Mandolini, A.; Mylonakis, G.: Kinematic response of single piles for different boundary conditions: analytical solutions and normalization schemes. Soil Dyn. Earthq. Eng. 44, 183–195 (2013)

    Google Scholar 

  17. Anoyatis, G.; Lemnitzer, A.: Kinematic Winkler modulus for laterally-loaded piles. Soils Found. 57(3), 453–471 (2017)

    Google Scholar 

  18. Novak, M.; Beredugo, Y.: Vertical vibration of embedded footings. J. Soil Mech. Found Div. 98(12), 1291–1310 (1972)

    Google Scholar 

  19. Nogami, T.; Novak, M.: Resistance of soil to a horizontally vibrating pile. Earthq. Eng. Struct. Dyn. 5(3), 249–261 (1977)

    Google Scholar 

  20. Hu, C.B.; Huang, X.M.: A quasi-analytical solution to soil–pile interaction in longitudinal vibration in layered soils considering vertical wave effect on soils. J. Earthq. Eng. Eng. Vib. 26(4), 205–211 (2006) (in Chinese)

    Google Scholar 

  21. Wang, K.H.; Zhang, Z.Q.; Leo, C.J.; Xie, K.H.: Dynamic torsional response of an end bearing pile in transversely isotropic saturated soil. J. Sound Vib. 327, 440–453 (2009)

    Google Scholar 

  22. Liu, L.C.; Yan, Q.F.; Yang, X.: Vertical vibration of single pile in soil described by fractional derivative viscoelastic model. Eng. Mech. 28(8), 177–182 (2011) (in Chinese)

    Google Scholar 

  23. Cui, C.Y.; Meng, K.; Wu, Y.J.; Chapman, D.; Liang, Z.M.: Dynamic response of pipe pile embedded in layered visco-elastic media with radial inhomogeneity under vertical excitation. Geomech. Eng. 16(6), 609–618 (2018)

    Google Scholar 

  24. Cui, C.Y.; Meng, K.; Liang, Z.: Effect of radial homogeneity on low-strain integrity detection of a pipe pile in a viscoelastic soil layer. Int. J. Distrib. Sens. Netw. 14(10), 1–8 (2018)

    Google Scholar 

  25. Novak, M.; Sheta, M.: Approximate approach to contact effects of piles. Special Technical Publication on Dynamic Response of Pile Foundations Analytical Aspects 53–79 (1980).

  26. Lqbal, K.; Xu, C.S.; Han, Y.C.: Analytical and numerical modeling for rocking impedance of a single pile in a radially inhomogeneous viscoelastic soil medium. Arab. J. Sci. Eng. 47, 12779–12788 (2022)

    Google Scholar 

  27. Wu, W.B.; Liu, H.; El Naggar, M.H.; Mei, G.X.; Jiang, G.S.: Torsional dynamic response of a pile embedded in layered soil based on the fictitious soil pile model. Comput. Geotech. 80, 190–198 (2016)

    Google Scholar 

  28. Gan, S.S.; Zheng, C.J.; Ko, U.G.; Ding, X.M.: Vertical vibration of piles in viscoelastic non-uniform soil overlying a rigid base. Acta Geotech. 15, 1321–1330 (2020)

    Google Scholar 

  29. Wu, W.B.; Jang, G.S.; Dou, B.; Leo, C.J.: Vertical dynamic impedance of tapered pile considering compacting effect. Math. Probl. Eng. 2013, 1–9 (2013)

    Google Scholar 

  30. Zhang, Y.P.; Liu, H.; Wu, W.B.; Wang, S.; Wu, T.; Wen, M.J.; Jiang, G.S.; Mei, G.X.: Interaction model for torsional dynamic response of thin-wall pipe piles embedded in both vertically and radially inhomogeneous soil. Int. J. Geomech. 21(10), 04021185 (2021)

    Google Scholar 

  31. Han, Y.C.; Sabin, G.C.: Impedances for radially inhomogeneous viscoelastic soil media. J. Eng. Mech. 121(9), 939–947 (1995)

    Google Scholar 

  32. Han, Y.C.: Dynamic vertical response of piles in nonlinear soil. J. Geotech. Geoenviron. Eng. 123(8), 710–716 (1997)

    Google Scholar 

  33. Zheng, C.J.; Liu, H.L.; Ding, X.M.; Fu, Q.: Horizontal vibration of a large-diameter pipe pile in viscoelastic soil. Math. Probl. Eng. 2013, 269493 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Luan, L.B.; Ding, X.M.; Zhou, S.L.; Zhu, Z.S.: Analytical solution of lateral vibration response of an axial loaded pile. Build. Struct. 45(19), 80–86 (2015) ((in Chinese))

    Google Scholar 

  35. Luan, L.B.; Ding, X.M.; Liu, H.L.; Zheng, C.J.: Analytical solution of lateral dynamic response of a large diameter pipe pile considering influence of axial load. Chin. J. Geotech. Eng. 38(10), 1859–1868 (2016) ((in Chinese))

    Google Scholar 

  36. Liu, H.; Wu, W.B.; Ni, X.Y.; Yang, X.Y.; Jiang, G.S.; El Naggar, M.H.; Liang, R.Z.: Influence of soil mass on the vertical dynamic characteristics of pipe piles. Comput. Geotech. 126, 1037 (2020)

    Google Scholar 

  37. Chau, K.T.; Yang, X.: Nonlinear interaction of soil-pile in horizontal vibration. J. Eng. Mech. 131(8), 847–858 (2005)

    Google Scholar 

  38. Anoyatis, G.; Mylonakis, G.: Analytical solution for axially loaded piles in two-layer soil. J. Eng. Mech. 146(3), 04020003 (2020)

    Google Scholar 

  39. Ding, X.M.; Zheng, C.J.; Liu, H.L.; Kouretzis, G.: Resistance of inner soil to the horizontal vibration of pipe piles. J. Eng. Mech. 143(11), 06017015 (2017)

    Google Scholar 

  40. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw Hill, New York (1956)

    MATH  Google Scholar 

  41. Ding, X.M.; Zheng, C.J.; Liu, C.J.: A theoretical analysis of vertical dynamic response of large-diameter pipe piles in layered soil. J. Central South Univ. 21, 3327–3337 (2014)

    Google Scholar 

  42. Ke, W.H.; Zhang, C.; Deng, P.: Kinematic response of single piles to vertical P-waves in multilayered soil. J. Earthq. Tsunami 9, 1550004 (2015)

    Google Scholar 

  43. Zhang, Z.Q.; Zhou, J.; Wang, K.H.; Li, Q.; Liu, K.F.: Dynamic response of an inhomogeneous viscoelastic pile in a multilayered soil to transient axial loading. Math. Probl. Eng. 2015, 495253 (2015)

    MathSciNet  MATH  Google Scholar 

  44. Li, Z.Y.; Wang, K.H.; Wu, W.B.; Leo, C.J.: Vertical vibration of a large diameter pile embedded in inhomogeneous soil based on the Rayleigh-Love rod theory. J. Zhejiang Univ. Sci. A 17(12), 974–988 (2016)

    Google Scholar 

  45. Li, Z.Y.; Wang, K.H.; Wu, W.B.; Leo, C.J.; Wang, N.: Vertical vibration of a large-diameter pipe pile considering the radial inhomogeneity of soil caused by the construction disturbance effect. Comput. Geotech. 85, 90–112 (2017)

    Google Scholar 

  46. Zheng, C.J.; Kouretzis, G.P.; Sloan, S.W.; Liu, H.L.; Ding, X.M.: Vertical vibration of an elastic pile embedded in poroelastic soil. Soil Dyn. Earthq. Eng. 77, 177–181 (2015)

    Google Scholar 

  47. Zheng, C.J.; Gan, S.H.; Luan, L.B.; Ding, X.M.: Vertical dynamic response of a pile embedded in a poroelastic soil layer overlying rigid base. Acta Geotech. 16, 977–983 (2021)

    Google Scholar 

  48. Chen, L.B.; Wu, W.B.; Liu, H.; Li, J.X.; Newson, T.; EI Naggar, M.H.: Analytical solution for kinematic response of offshore piles under vertically propagating S-waves. Ocean Eng. 262, 112018 (2022)

    Google Scholar 

Download references

Acknowledgements

This research was jointly funded by the National Natural Science Foundation of China (52078010, 52108334) and Ministry of Education Innovation Team of China (IRT_17R03). The support is gratefully acknowledged. The results and conclusions presented are those of the authors and do not necessarily reflect the view of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piguang Wang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Zhao, M., Wang, P. et al. Analytical Study on the Impedance of Radial Heterogeneous Viscoelastic Soil with Two Different Methods. Arab J Sci Eng 48, 12991–13004 (2023). https://doi.org/10.1007/s13369-023-07632-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07632-z

Keywords

Navigation