Skip to main content
Log in

A Novel Musical Chairs Optimization Algorithm

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A novel optimization algorithm called musical chairs algorithm (MCA) is introduced in this paper for a shorter convergence time and lower failure rate compared to other optimization algorithms. This idea is implemented by using several search agents at the beginning of optimization steps and reduces this number gradually by removing the worst solutions. This idea is inspired by the musical chairs game in which the players and chairs are reduced by one in each round of the game. The proposed methodology has been compared with 10 other optimization algorithms for 10 benchmark functions. The results obtained from this comparison study showed superior performance of the MCA compared to the other optimization algorithms for all benchmark functions and different numbers of search agents. The convergence time varied between 3.8% and 18.2% compared to the average convergence time for all optimization algorithms applied with all benchmark functions. At the same time, the failure rate of the MCA is 0% for all the benchmark functions, but other optimization algorithms give a percentage of the failure rate. Moreover, the MCA is applied to feature selection of load forecasting as a real-world application which is vital for smart grid applications. The MCA is modified from continuous to binary MCA (BMCA). The BMCA is compared to several optimization algorithms, where it outperforms other optimization algorithms to select the best set of features to quickly and correctly learn the forecasting model. The accuracy of the obtained results from BMCA is increased to 96.7% compared to 70% of other algorithms, and the convergence time is reduced to 0.096 s compared to 18 s for other optimization algorithms. The outstanding results of MCA compared to the other optimization algorithms prove its superiority for all types of applications even with very complex benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

MCA:

Musical chairs algorithm

BMCA:

Binary musical chairs algorithm

SO:

Snake optimizer

FLA:

Fick's law algorithm

NFL:

No free lunch

PSO:

Particle swarm optimization

BA:

Bat algorithm

NESTPSO:

Nested particle swarm optimization

BA-BA:

Bat algorithm-bat algorithm or nested bat algorithm

MPPT:

Maximum power point tracker

PV:

Photovoltaic

LSA:

Lightning search algorithm

ALO:

Ant lion optimizer

MFO:

Moth-flame optimization

CSA:

Crow search algorithm

HHO:

Harris hawk optimizer

NB:

Naïve Bayes

IPSO:

Improved particle swarm optimization

GWO:

Gray wolf optimization

IGWO:

Improved gray wolf optimization

WOA:

Whale optimization algorithm

FA:

Firefly algorithm

Chimp:

Chimpanzee algorithm

SCA:

Sine cosine algorithm

F1, F2,…., F10:

Labels of the 10 benchmark functions, which are; De Jong’s sphere, Schwefel’s problems 2.22, Schwefel’s problem 1.2, Schwefel’s problem 2.21, Ackley, Rastrigin, Brown, Powell Sum, Griewank, and Salomon

V i(t + 1):

The speed of ith particle at the next iteration

V i(t):

The speed of ith particle at the current iteration

t :

An index of the current iteration

P p i(t):

The best position of ith particle (the personal best position) at the current iteration

P i(t):

The current position of ith particle at the current iteration

P G(t):

The best position in the swarm (the global best position) at the current iteration

P i(t + 1):

The update position of ith particle at the next iteration

ω :

The inertia weight

c 1 and c 2 :

The cognitive constant and the social acceleration constant, respectively

r 1 and r 2 :

Two random numbers which are independently generated

Y :

The constriction factor used to represent the relation between the control parameters of the PSO

bVc :

The best fitness value of chairs

bPc :

The best position of chairs

\(\vec{V}_{{\text{c}}}\) :

A vector representing the fitness values of chairs

\(P_{p,{k}}^{g}\) :

The position of player k at the iteration g

K :

The order of each player, K = K0, K0 −1,…..2

K 0 :

The starting number of search agents (swarm size)

g :

The generation (iteration) number, g = 1,2,…..,G,…., G0

G :

The total number of iterations when the stopping strategy is validated

G 0 :

The maximum number of iterations

M :

The increment or step size of the MCA

\(u\) and v :

Two matrices with a uniform distribution

σ u and σ v :

The variances of u and v, respectively

β :

L’evy flights that provide a random walk for players

R :

A random variable (\(R \in [ - 1,\;1]\))

P pk :

Initial positions of K0 players; Ppk (k = 1,2,….., K0)

V p(P p):

The objective function for all players; Pp = (Pp1, Pp2,…..,Pp,K+1)T

\(\vec{V}_{p}^{g}\) :

The vector representing the values of search agents (players) during the iteration g

\(\varepsilon_{1}\) :

A predefined tolerance value (\(\varepsilon_{1}\) is selected to be 105 in this study)

std:

The standard deviation

NSS:

The number of calling the objective function (convergence time)

N T :

The whole number of occurrences

FR:

Failure Rate

N F :

The whole number of failure occurrences

\({\text{bV}}_{c}^{G}\) :

The best fitness value obtained from each simulation in every single run

\(V_{{{\text{opt}}}}\) :

The known optimum fitness value

\(\varepsilon_{2}\) :

Predefined tolerance to represent the maximum allowable difference between the best fitness and the theoretical best fitness of each benchmark function under study

fet:

The total number of electrical features

v Pk :

The fitness value of the kth player

A(P k):

The accuracy of the NB method based on the chosen features in the kth player

P f bin_k(iteration + 1):

The binary value of kth player at fth binary bit in the next iteration iteration + 1

r(0,1):

A random value between [0, 1]

s(Pf k):

The sigmoid function which represents the probability of fth binary bit where it takes 0 or 1 value

e :

The base of the natural logarithm

D :

The variable that refers to the order of objective function (Dimensionality)

f min :

The global minima that represent the minimum fitness value

u b and l b :

The upper bound and lower bound respectively

References

  1. Abdulkadir, M.; Yatim, A.; Yusuf, S.: An improved PSO-based MPPT control strategy for photovoltaic systems. Int. J. Photoenergy 2014, 1–12 (2014)

    Article  Google Scholar 

  2. Eltamaly, A.M.; Farh, H.M.; Abokhalil, A.G.: A novel PSO strategy for improving dynamic change partial shading photovoltaic maximum power point tracker. Energy Sources Part A Recov. Util. Environ. Effects (2020). https://doi.org/10.1080/15567036.2020.1769774

    Article  Google Scholar 

  3. Duan, M., Li, K. and Tian, Q.: A novel multi-task tensor correlation neural network for facial attribute prediction. arXiv preprint arXiv: 1804.02810 (2018)

  4. Eltamaly, A.M.; Al-Saud, M.S.; Abokhalil, A.G.: A novel scanning bat algorithm strategy for maximum power point tracker of partially shaded photovoltaic energy systems. Ain Shams Eng. J. 11(4), 1093–1103 (2020)

    Article  Google Scholar 

  5. Ali, M.E.; Al-Saud, M.S.; Abokhalil, A.G.; Farh, H.M.: Simulation and experimental validation of fast adaptive particle swarm optimization strategy for photovoltaic global peak tracker under dynamic partial shading. Renew. Sustain. Energy Rev. 124, 109719 (2020)

    Article  Google Scholar 

  6. K. Harrison, A. Engelbrecht and B. Ombuki-Berman: An adaptive particle swarm optimization algorithm based on optimal parameter regions. In: IEEE symposium series on computational intelligence (SSCI), Honolulu, HI, USA (2017)

  7. Eltamaly, M.A.: A novel musical chairs algorithm applied for MPPT of PV systems. Renew. Sustain. Energy Rev. 146, 1–19 (2021)

    Article  Google Scholar 

  8. Eltamaly, A.M.: Musical chairs algorithm for parameters estimation of PV cells. Sol. Energy 241, 601–620 (2022)

    Article  Google Scholar 

  9. Wolpert, D.; Macready, W.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  10. Eltamaly, A.M.; Al-Saud, M.S.; Abokhalil, A.G.: A novel bat algorithm strategy for maximum power point tracker of photovoltaic energy systems under dynamic partial shading. IEEE Access 8, 10048–10060 (2020)

    Article  Google Scholar 

  11. Chatterjee, A.; Siarry, P.: Nonlinear inertia weight variation for dynamic adaptation in particle swarm optimization. Comput. Oper. Res. 33(3), 859–871 (2006)

    Article  MATH  Google Scholar 

  12. Li, M.; Zhang, M.; Chen, H.; Lu, S.: A method of biomedical information classification based on particle swarm optimization with inertia weight and mutation. Open Life Sci. 13(1), 355–373 (2018)

    Article  Google Scholar 

  13. Zhan, D.; Lu, H.; Hao, W.; Jin, D.: Improving particle swarm optimization: using neighbor heuristic and Gaussian cloud learning. Intell. Data Anal. 20(1), 167–182 (2016)

    Article  Google Scholar 

  14. Zhang, L.; Tang, Y.; Hua, C.; Guan, X.: A new particle swarm optimization algorithm with adaptive inertia weight based on Bayesian techniques. Appl. Soft Comput. 28, 138–149 (2015)

    Article  Google Scholar 

  15. Clerc, M.: The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation-CEC99, IEEE, Washington, DC, USA , vol. 3, pp. 1951–1957 (1999)

  16. Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 congress on evolutionary computation. CEC00, vol. 1, pp. 84–88 (2000)

  17. Shi, Y., Eberhart, R.: Parameter selection in particle swarm optimization. In: The 7th annual conference on evolutionary programming, San Diego, USA., vol. 1447, pp. 591–600 (1998)

  18. Shi, Y., Eberhart, R.,: Empirical study of particle swarm optimization. In: Proceedings of the 1999 congress on evolutionary computation-CEC99, vol. 3, pp. 1945–1950 (1999)

  19. Leonard, B., Engelbrecht, A.: On the optimality of particle swarm parameters in dynamic environments. In: IEEE congress evolutionary computation, IEEE, pp. 1564–1569 (2013)

  20. Eltamaly, A.M.; Al-Saud, M.S.; Abo-Khalil, A.G.: Performance improvement of PV systems’ maximum power point tracker based on a scanning PSO particle strategy. Sustainability 12(3), 1185 (2020)

    Article  Google Scholar 

  21. Wang, Y.; Li, B.; Weise, T.; Wang, J.; Yuan, B.; Tian, Q.: Self-adaptive learning based particle swarm optimization. Inf. Sci. 181(20), 4515–4538 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nepomuceno, F., Engelbrecht, A.: A Self-adaptive heterogeneous PSO for real-parameter optimization. In: 2013 IEEE congress on evolutionary computation, pp. 361–368 (2013)

  23. Eltamaly, M.A.: A novel strategy for optimal PSO control parameters determination for PV energy systems. Sustainability 13(2), 1008 (2021)

    Article  Google Scholar 

  24. Eltamaly, M.A.: Optimal control parameters for bat algorithm in maximum power point tracker of photovoltaic energy systems. Int. Trans. Electr. Energy Syst. 31(4), e12839 (2021)

    Article  Google Scholar 

  25. Naka, S., Genji, T., Yura, T., Fukuyama, Y.: Practical distribution state estimation using hybrid particle swarm optimization. In: IEEE power engineering society winter meeting, Columbus, USA, pp. 815-820 (2001)

  26. Suganthan, P.: Particle swarm optimiser with neighborhood operator. In: Proceedings of the 1999 congress on evolutionary computation-CEC99, IEEE, Piscataway, USA, vol. 3, pp. 1958–1962 (1999)

  27. Oliveira, F.; Silva, S.; Durand, F.; Sampaio, L.; Bacon, V.; Campanhol, L.: Grid-tied photovoltaic system based on PSO MPPT technique with active power line conditioning. IET Power Electr. 9(6), 1180–1191 (2016)

    Article  Google Scholar 

  28. Eltamaly, A.: An improved cuckoo search algorithm for maximum power point tracking of photovoltaic systems under partial shading conditions. Energies 14(4), 953 (2021)

    Article  Google Scholar 

  29. Shi, Y., Eberhart, R.: Fuzzy adaptive particle swarm optimization. In: Proceedings of the 2001 congress on evolutionary computation, IEEE, Seoul, Korea, vol. 1, pp. 101–106 (2001)

  30. Harrison, K.; Engelbrecht, A.; Ombuki-Berman, B.: Optimal parameter regions and the time-dependence of control parameter values for the particle swarm optimization algorithm. Swarm Evol. Comput. 41, 20–35 (2018)

    Article  Google Scholar 

  31. Eltamaly, A.: A novel particle swarm optimization optimal control parameter determination strategy for maximum power point trackers of partially shaded photovoltaic systems. Eng. Optim. pp. 1–17 (2021)

  32. Maddikunta, P.; Gadekallu, T.; Kaluri, R.; Srivastava, G.; Parizi, R.; Khan, M.: Green communication in IoT networks using a hybrid optimization algorithm. Comput. Commun. 159, 97–107 (2020)

    Article  Google Scholar 

  33. El Sehiemy, R.; Selim, F.; Bentouati, B.; Abido, M.: A novel multi-objective hybrid particle swarm and salp optimization algorithm for technical-economical-environmental operation in power systems. Energy 193, 116817 (2020)

    Article  Google Scholar 

  34. Eltamaly, A.; Farh, H.: Dynamic global maximum power point tracking of the PV systems under variant partial shading using hybrid GWO-FLC. Sol. Energy 177, 306–316 (2019)

    Article  Google Scholar 

  35. Liu, Z.; Qin, Z.; Zhu, P.; Li, H.: An adaptive switchover hybrid particle swarm optimization algorithm with local search strategy for constrained optimization problems. Eng. Appl. Artif. Intell. 95, 103771 (2020)

    Article  Google Scholar 

  36. Awad, A.; Abdel-Mawgoud, H.; Kamel, S.; Ibrahim, A.; Jurado, F.: Developing a hybrid optimization algorithm for optimal allocation of renewable DGs in distribution network. Clean Technol. 3(2), 409–423 (2021)

    Article  Google Scholar 

  37. Wu, Z.; Yu, D.: Application of improved bat algorithm for solar PV maximum power point tracking under partially shaded condition. Appl. Soft Comput. 62, 101–109 (2018)

    Article  Google Scholar 

  38. Xiao, L.; Qian, F.; Shao, W.: Multi-step wind speed forecasting based on a hybrid forecasting architecture and an improved bat algorithm. Energy Convers. Manage. 143, 410–430 (2017)

    Article  Google Scholar 

  39. Cai, X.; Gao, X.; Xue, Y.: Improved bat algorithm with optimal forage strategy and random disturbance strategy. Int. J. Bio-Inspired Comput. 8(4), 205–214 (2016)

    Article  Google Scholar 

  40. Chauhan, P.; Deep, K.; Pant, M.: Novel inertia weight strategies for particle swarm optimization. Memetic Comput. 5, 229–251 (2013)

    Article  Google Scholar 

  41. Rathore, A., Sharma, H.: Review on inertia weight strategies for particle swarm optimization. In: Proceedings of sixth international conference on soft computing for problem solving, Springer, Singapore, vol. 547, pp. 76-86 (2017)

  42. Bansal, J., Singh, P., Saraswat, M., Verma, A., Jadon, S., Abraham, A.: Inertia weight strategies in particle swarm optimization. In: 2011 third world congress on nature and biologically inspired computing, pp. 633–640 (2011)

  43. Isiet, M.; Gadala, M.: Self-adapting control parameters in particle swarm optimization. Appl. Soft Comput. 83, 1–24 (2019)

    Article  Google Scholar 

  44. Alireza, A.: PSO with adaptive mutation and inertia weight and its application in parameter estimation of dynamic systems. Acta Automatica Sinica 37(5), 541–549 (2011)

    Article  MATH  Google Scholar 

  45. Eltamaly, A. M., Alotaibi, M.A., Elsheikh, W.A.,Alolah, A.I. and Ahmed, M.A.: Novel demand side-management strategy for smart grid concepts applications in hybrid renewable energy systems. In: 2022 4th international youth conference on radio electronics, electrical and power engineering (REEPE) (pp. 1–7). IEEE (2022)

  46. Alotaibi, M.A.; Eltamaly, A.M.: upgrading conventional power system for accommodating electric vehicle through demand side management and V2G concepts. Energies 15(18), 6541 (2022)

    Article  Google Scholar 

  47. Yang, X., Deb, S.: Cuckoo search via lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC), IEEE,Coimbatore, India, pp. 210–214 (2009)

  48. Rabie, A.; Ali, S.; Ali, H.; Saleh, A.: A fog based load forecasting strategy for smart grids using big electrical data. Clust. Comput. 22(1), 241–270 (2019)

    Article  Google Scholar 

  49. Madrid, A. E.: Short-term electricity load forecasting (Panama case study). Mendeley Data, V1, doi: https://doi.org/10.17632/byx7sztj59.1 (2021)

  50. https://www.kaggle.com/datasets/saurabhshahane/electricity-load-forecasting

  51. Rabie, A.; Mansour, N.; Saleh, A.; Takieldeen, A.: Expecting individuals’ body reaction to Covid-19 based on statistical Naïve Bayes technique. Pattern Recogn. 128, 1–23 (2022)

    Article  Google Scholar 

  52. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  53. Gao, Z.; Zhao, J.: An improved grey wolf optimization algorithm with variable weights. Comput. Intell. Neurosci. 2019, 1–13 (2019)

    Article  Google Scholar 

  54. Mirjalili, S.; Lewis, A.: The whale optimization algorithm. Adv. Eng. Softw. 96, 51–67 (2016)

    Article  Google Scholar 

  55. Yang, X.: Chapter 8 - firefly algorithms. Nature-Inspired Optimization Algorithms, pp. 111–127 (2014)

  56. Mirjalil, S.: The ant lion optimizer. Adv. Eng. Softw. 83, 80–98 (2015)

    Article  Google Scholar 

  57. Yang, X.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010). Studies in Computational Intelligence, Springer, Berlin, Heidelberg, vol. 284, pp. 65–74 (2010)

  58. Khishe, M.; Mosavi, M.: Chimp optimization algorithm. Expert Syst. Appl. 149, 1–26 (2020)

    Article  Google Scholar 

  59. Mirjalili, S.: SCA: a sine cosine algorithm for solving optimization problems. Knowl.-Based Syst. 96, 120–133 (2016)

    Article  Google Scholar 

  60. Jamil, M.; Yang, X.: A literature survey of benchmark functions for global optimization problems. Int. J. Math. Modell. Num. Optim. (IJMMNO) 4(2), 150–194 (2013)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the King Saud University, Saudi Arabia, Deanship of Scientific research, Research Chair Saudi Electricity Company Chair in Power System Reliability and Security.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali M. Eltamaly.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eltamaly, A.M., Rabie, A.H. A Novel Musical Chairs Optimization Algorithm. Arab J Sci Eng 48, 10371–10403 (2023). https://doi.org/10.1007/s13369-023-07610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07610-5

Keywords

Navigation