Skip to main content
Log in

Comparative Analysis of Five Planar Monopole Antennas for LTE/C-V2X/5G/WiMAX Applications

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper presents a comparative analysis of five various shapes of miniature planar monopole antennas with a partial ground plane for WiMAX, LTE, and sub-6 GHz 5G NR applications. With the same patch active area, all the antennas are designed at 3.4 GHz on a 1.524-mm-thick FR4 with a relative permittivity of 4.4 and 0.02 of loss tangent. The circular, elliptical, square, diamond, and heart shapes are various antenna structures investigated and discussed herein. A mathematical model, which predicts the resonant frequency of each antenna structure, is derived and presented. The modeling and simulation are carried out using the high-frequency structural simulator (HFSS), while the experimental validations have been done with the Rohde & Schwarz vector network analyzer ZVA50. The study yielded relatively attractive and interesting results highlighting the effect of a monopole antenna shape on its electromagnetic performance parameters. The five antennas are evaluated and compared, emphasizing reflection coefficient, impedance matching, bandwidth, radiation efficiency, bandwidth dimension ratio, and gain. All the antenna designs exhibit a minimum − 10 dB impedance bandwidth of 1.36 GHz, a reflection coefficient less than − 20 dB, and a radiation efficiency better than 75%. At their resonant frequencies, the heart shape yields better results as compared to other shapes. The results show a good agreement between experimental results and simulations. This validated the proposed mathematical models and design procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Siakavara, K.: Methods to design microstrip antennas for modern applications. Microstrip Antennas (2011). https://doi.org/10.5772/14676

    Article  Google Scholar 

  2. Paul, L.C.; Hosain, M.S.; Sarker, S.; Prio, M.H.; Morshed, M.; Sarkar, A.K.: The effect of changing substrate material and thickness on the performance of inset feed microstrip patch antenna. Am. J. Netw. Commun. 4(3), 54–58 (2015)

    Article  Google Scholar 

  3. Kufre, M.; Jeffrey, C.: Parametric comparison of circular, triangular and rectangular dual - band microstrip antennas for wireless communication. Eur. J. Eng. Technol. 7, 9–20 (2019)

    Google Scholar 

  4. Asrokin, A.; Abas, A.; Abd Rahim, M.K.: Design comparison of square and circular dual band microstrip antenna. In: 2008 International Conference on Electronic Design. IEEE. pp. 1-4, (2008). https://doi.org/10.1109/ICED.2008.4786693.

  5. Merad, L.; Bendimerad, F.T.; Meriah, S.M.: Design and resonant frequency calculation of rectangular microstrip antennas. Int. J. Numerical Modell. Electron. Netw. Dev. Fields 24(2), 144–153 (2011). https://doi.org/10.1002/jnm.767

    Article  MATH  Google Scholar 

  6. Moukala Mpele, P.; Moukanda Mbango, F.; Onyango Konditi, D.B.: A small dual band (28/38 GHz) elliptical antenna for 5G applications with DGS. Int. J. Sci. Technol. Res. 8, 353–357 (2019)

    Google Scholar 

  7. Rana, S.B.; Kaur, H.: Design and fabrication of hexagonal antenna for wireless applications. Int. J. Inf. Technol. 12, 447–452 (2020). https://doi.org/10.1007/s41870-018-0234-9

    Article  Google Scholar 

  8. Lee, K.F.; Tong, K.F.: Microstrip patch antennas. In: Chen, Z.; Liu, D.; Nakano, H.; Qing, X.; Zwick, T. (Eds.) Handbook of Antenna Technologies. Springer, Singapore (2016). https://doi.org/10.1007/978-981-4560-44-3_29

    Chapter  Google Scholar 

  9. Serres, A.J.R.; de Freitas Serres, G.K.; da Silva Júnior, P.F.; Freire, R.C.S.; Do Nascimento Cruz, J.; de Albuquerque, T.C.; da Fonseca Silva, P.H.: Bio-inspired microstrip antenna. Trends Res. Microstrip Antennas (2017). https://doi.org/10.5772/intechopen.69766

    Article  Google Scholar 

  10. Balanis, C.A.: Antenna Theory: Analysis and Design. Wiley, Amsterdam (2015)

    Google Scholar 

  11. Volakis, J.L.: Antenna Engineering Handbook, 4th edn. McGraw-Hill Education, Amsterdam (2007)

    Google Scholar 

  12. Shen, J.; Lu, C.; Zhang, J.: Heart-shaped dual band-notched UWB antenna. In: Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation. IEEE. pp. 487-490, (2014)

  13. Prasad, M.; Khasim, S.; Teja, T.S.; Avinash, D.; Rao, D.N.: A triband heart shaped microstrip patch antenna. Int. J. Recent Innov. Trends Comput. Commun. 3, 1070–1073 (2015). https://doi.org/10.17762/ijritcc2321-8169.150338

    Article  Google Scholar 

  14. Hua, C.; Lu, Y.; Liu, T.: UWB heart-shaped planar monopole antenna with a reconfigurable notched band. Prog. Electromagn. Res. Lett. 65, 123–130 (2017). https://doi.org/10.2528/PIERL16120203

    Article  Google Scholar 

  15. Torres, C.F.; Monroy, J.M.; Morales, H.L.; Pérez, R.C.; Tellez, A.C.: Heart shaped monopole antenna with defected ground plane for UWB applications. In: 2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). IEEE. pp. 1-4, (2014). https://doi.org/10.1109/ICEEE.2014.6978273.

  16. Hua, C.; Lu, Y.; Liu, T.: Printed UWB heart-shaped monopole antenna with band-notch reconfigurability. In: 2016 IEEE International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM). IEEE. pp. 1-3, (2016).https://doi.org/10.1109/iWEM.2016.7504959

  17. Ray, K.P.: Design aspects of printed monopole antennas for ultra-wide band applications. Int. J. Antennas Propag. 2008, 1–8 (2008). https://doi.org/10.1155/2008/713858

    Article  Google Scholar 

  18. Lohokare, M.R.; Pattnaik, S.S.; Devi, S.; Bakwad, K.M.; Joshi, J.G.: Parameter calculation of rectangular microstrip antenna using biogeography-based optimization. In: 2009 Applied Electromagnetics Conference (AEMC). IEEE. pp. 1-4, (2009). https://doi.org/10.1109/AEMC.2009.5430676

  19. Kiruthika, R.; Shanmuganantham, T.: Comparison of different shapes in microstrip patch antenna for X-band applications. In: 2016 International Conference on Emerging Technological Trends (ICETT). IEEE. pp. 1-6, (2016).https://doi.org/10.1109/ICETT.2016.7873722

  20. Gadag, M.; Joshi, S.; Gadag, N.: Performance comparison of rectangular and circular micro-strip antenna at 2.4 GHz for wireless applications using IE3D. In: Intelligent Communication and Computational Technologies. Springer, Singapore. pp. 181-190,(2018). https://doi.org/10.1007/978-981-10-5523-2_17.

  21. Dilek, U.Z.E.R.; Gültekin, S.S.; Rabia, T.O.P.; Uğurlu, E.; Dündar, Ö.: A comparison of different patch geometry effects on Bandwidth. Int. J. Appl. Math. Electron. Comput. 1, 421–423 (2016)

    Google Scholar 

  22. Kaur, N.; Sharma, N.; Singh, N.: A study of different feeding mechanisms in microstrip patch antenna. Int. J. Microw. Appl. 6, 5–9 (2017)

    Google Scholar 

  23. Arora, A.; Khemchandani, A.; Rawat, Y.; Singhai, S.; Chaitanya, G.: Comparative study of different feeding techniques for rectangular microstrip patch antenna. Int. J. Innov. Res. Electr. Electron. Instrum. Control Eng. 3(5), 32–35 (2015)

    Google Scholar 

  24. Singh, G.; Sharma, M.: Study of different microstrip patch antenna and their feeding schemes. Int. J. Adv. Res. Ideas Innov. Technol. 4, 1315–1321 (2018)

    Google Scholar 

  25. Ali, T.; Pathan, S.; Biradar, R.C.: Multiband, frequency reconfigurable, and metamaterial antennas design techniques: Present and future research directions. Int. Technol. Lett. 1(6), e19 (2018). https://doi.org/10.1002/itl2.19

    Article  Google Scholar 

  26. Luo, Q.; Pereira, J.R.; Salgado, H.: Low cost compact multiband printed monopole antennas and arrays for wireless communications. In: Huitema, L. (ed.) Progress in Compact Antennas. IntechOpen (2014). https://doi.org/10.5772/58815

    Chapter  Google Scholar 

  27. Hosain, M.M.; Kumari, S.; Tiwary, A.K.: Design of circular disc monopole antenna for UWB application. Lect. Notes Electr. Eng. 453, 339–352 (2018). https://doi.org/10.1007/978-981-10-5565-2_30

    Article  Google Scholar 

  28. Chandra, K.; Kumar, M.; Upadhayay, M.D.: Compact triple-band CPW-Fed monopole antenna for bluetooth/WiMAX/WLAN applications. Iran. J. Sci. Technol. Trans. Electr. Eng. 44(2), 695–701 (2020). https://doi.org/10.1007/s40998-019-00265-9

    Article  Google Scholar 

  29. Tiwari, R.N.; Singh, P.; Kanaujia, B.K.: Asymmetric U-shaped printed monopole antenna embedded with T-shaped strip for bluetooth, WLAN/WiMAX applications, Wirel. Networks 26, 51–61 (2020). https://doi.org/10.1007/s11276-018-1781-5

    Article  Google Scholar 

  30. Sharma, M.; Awasthi, Y.K.; Singh, H.: Compact multiband planar monopole antenna for Bluetooth, LTE, and reconfigurable UWB applications including X-band and Ku-band wireless communications. Int. J. RF Microw. Comput. Eng. 29, 1–11 (2019). https://doi.org/10.1002/mmce.21668

    Article  Google Scholar 

  31. Sahoo, S.; Mishra, L.P.; Mohanty, M.N.; Mishra, R.K.: Design of compact UWB monopole planar antenna with modified partial ground plane. Microw. Opt. Technol. Lett. 60, 578–583 (2018). https://doi.org/10.1002/mop.31010

    Article  Google Scholar 

  32. Perhirin, S.; Auffret, Y.: A low consumption electronic system developed for a 10km long all-optical extension dedicated to sea floor observatories using power-over-fiber technology and SPI protocol. Microw. Opt. Technol. Lett. 55, 2562–2568 (2013). https://doi.org/10.1002/mop

    Article  Google Scholar 

  33. De, A.: Bappadittya Roy, and Anup Kumar Bhattacharjee, “Design and investigations on a compact, UWB, monopole antenna with reconfigurable band notches for 5.2/5.8 GHz WLAN and 5.5 GHz Wi-MAX bands.” Int. J. Commun. Syst. (2020). https://doi.org/10.1002/dac.4323

    Article  Google Scholar 

  34. Mandal, T.; Das, S.: Microstrip feed spanner shape monopole antennas for ultra wide band applications. J. Microw. Optoelectron. Electromag. Appl. 12, 15–22 (2013). https://doi.org/10.1590/s2179-10742013000100002

    Article  Google Scholar 

  35. Ahmad, W.; Tarczynski, A.; Budimir, D.: Design of monopole antennas for uwb applications. In: 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE. pp. 2323-2324, (2017). https://doi.org/10.1109/APUSNCURSINRSM.2017.8073204.

  36. Bajirao, A.; Thakur, S.S.: U-shaped printed monopole antenna. In: 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM). IEEE. pp. 1-6, (2017). https://doi.org/10.1109/IAIM.2017.8402611

  37. Mpele, P.M.; Mbango, F.M.; Konditi, D.B.; Ndagijimana, F.: A tri-band and miniaturized planar antenna based on countersink and defected ground structure techniques. Int. J. RF Microw. Comput. Aided Eng. 31(5), e22617 (2021). https://doi.org/10.1002/mmce.22617

    Article  Google Scholar 

  38. Kumar, G.; Ray, K.P.: Broadband Microstrip Antennas. Artech House, Noorwood (2002)

    Google Scholar 

  39. Mbango, F.M.; Ndagijimana, F.; Okana, A.L.: Dual coaxial probes in transmission, inserted by dielectric with two different thicknesses to extract the material complex relative permittivity: discontinuity impacts. Prog. Electromagn. Res. C 110, 67–80 (2021). https://doi.org/10.2528/PIERC21010403

    Article  Google Scholar 

  40. Pandey, A.: Practical Microstrip and Printed Antenna Design, 1st edn. Artech House, Norwood (2019)

    Google Scholar 

  41. Sayidmarie, K.H.; Yahya, L.S.: Modeling of dual-band crescent-shape monopole antenna for WLAN applications. Int. J. Electromagn. Appl. 4, 31–39 (2014). https://doi.org/10.5923/j.ijea.20140402.01

    Article  Google Scholar 

  42. Fertas, K.; Ghanem, F.; Challal, M.; Aksas, R.: Design and development of compact reconfigurable tri-stopband bandstop filter using hexagonal metamaterial cells for wireless applications. Prog. Electromagn. Res. M 80, 93–102 (2019). https://doi.org/10.2528/PIERM18102305

    Article  Google Scholar 

  43. AWR Design Environment | AWR Software, (n.d.). https://www.awr.com/awr-software/products/awr-design-environment (accessed Feb 12, 2022).

  44. Ez-zaki, F.; Belaid, K.A.; Ahmad, S.; Belahrach, H.; Ghammaz, A.; Al-Gburi, A.J.A.; Parchin, N.O.: Circuit modelling of broadband antenna using vector fitting and foster form approaches for IoT applications. Electronics 11, 3724 (2022). https://doi.org/10.3390/electronics11223724

    Article  Google Scholar 

  45. Minin, I.: Microwave and Millimeter Wave Technologies Modern UWB antennas and equipment. InTech (2010). https://doi.org/10.5772/210

  46. Saha, C.; Siddiqui, J.Y.; Antar, Y.M.: Multifunctional Ultrawideband Antennas: Trends, Techniques and Applications. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  47. Yang, M.; Sun, Y.; Zhou, J.: Hybrid antenna array for 4g/5g smartphone applications. Prog. Electromagn. Res. M 96, 109–118 (2020). https://doi.org/10.2528/pierm20071202

    Article  Google Scholar 

  48. Alibakhshi-Kenari, M.; Naser-Moghadasi, M.; Sadeghzadeh, R.A.; Virdee, B.S.; Limiti, E.: A new planar broadband antenna based on meandered line loops for portable wireless communication devices. Radio Sci. 51, 1109–1117 (2016). https://doi.org/10.1002/2016RS005973

    Article  Google Scholar 

  49. Mpele, P.M.; Mbango, F.M.; Konditi, D.B.; Ndagijimana, F.: A novel quadband ultra miniaturized planar antenna with metallic vias and defected ground structure for portable devices. Heliyon 7(3), e06373 (2021). https://doi.org/10.1016/j.heliyon.2021.e06373

    Article  Google Scholar 

  50. Fares, S.A.; Adachi, F.: Microstrip antennas for mobile wireless communication systems. In: Mobile and Wireless Communications Network Layer and Circuit Level Design, pp. 163–189. InTech (2010). https://doi.org/10.5772/7705

  51. Tiwari, R.N.; Singh, P.; Kanaujia, B.K.: Compact printed antenna designs: need for UWB communications. In: Kanaujia, B.K., Gupta, S.K., Kishor, J., Gangwar, D. (eds.) Printed Antennas: Theory and Design, pp. 165–212. CRC Press (2020). https://doi.org/10.1201/9780367420451-6

    Chapter  Google Scholar 

  52. Mahmud, M.Z.; Alam, T.; Islam, M.T.: A triangular coupled-resonator antenna for ultra-wideband applications. Appl. Phys. A Mater. Sci. Process. 123, 2–5 (2017). https://doi.org/10.1007/s00339-016-0639-x

    Article  Google Scholar 

  53. Chen, H.; Yang, X.; Yin, Y.Z.; Fan, S.T.; Wu, J.J.: Triband planar monopole antenna with compact radiator for WLAN/WiMAX applications. IEEE Antennas Wirel. Propag. Lett. 12, 1440–1443 (2013). https://doi.org/10.1109/LAWP.2013.2287312

    Article  Google Scholar 

  54. Naik, K.K.: Asymmetric CPW-fed SRR patch antenna for WLAN/WiMAX applications. AEU-Int. J. Electron. Commun. 93, 103–108 (2018). https://doi.org/10.1016/j.aeue.2018.06.008

    Article  Google Scholar 

  55. Hasan, M.; Rahman, M.; Faruque, M.; Islam, M.; Khandaker, M.: Electrically compact SRR-loaded metamaterial inspired quad band antenna for bluetooth/WiFi/WLAN/WiMAX system. Electronics 8, 790 (2019). https://doi.org/10.3390/electronics8070790

    Article  Google Scholar 

  56. Liu, T.; Sun, Y.; Li, J.; Yu, J.; Wang, K.: CPW-fed compact multiband monopole antenna for WLAN/WiMAX/X-band application. Prog. Electromagn. Res. Lett. 87, 105–113 (2019). https://doi.org/10.2528/pierl19080902

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge in advance the time and effort that reviewers will devote to improving the quality of this work through their comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Moukala Mpele.

Ethics declarations

Conflict of interest

The author declares no potential conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moukala Mpele, P., Moukanda Mbango, F. & Konditi, D.B.O. Comparative Analysis of Five Planar Monopole Antennas for LTE/C-V2X/5G/WiMAX Applications. Arab J Sci Eng 48, 6841–6855 (2023). https://doi.org/10.1007/s13369-023-07604-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-023-07604-3

Keywords

Navigation