Skip to main content

Advertisement

Log in

Ca2+ Solvation and Electrochemical Solid/Electrolyte Interphase Formation Toward the Multivalent-Ion Batteries

  • Review Article-chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Calcium is a promising candidate for future efficient and economical energy storage, as it is one of the most abundant elements and offers a more than twofold increase in the volumetric capacity compared to monovalent lithium-ion batteries. Compared to other widely explored multivalent ions such as magnesium, calcium did not receive as much attention until the discovery of Ca(BH4)2 in THF as an electrolyte, in which calcium can be plated and stripped at room temperature with low polarization. Since then, a wide array of computational methods and experimental approaches have aided in improving the performance of calcium-ion batteries. Because the solvation and desolvation on the cathode anode are simultaneous, complementary reactions, i.e., oxidation and reduction, an understanding of the dynamic Ca2+ solvation process at the electrode/electrolyte interface is critical in designing an electrolyte that is compatible with both electrodes. In this article, we will deliver a comprehensive review of the Ca2+ solvation study through computation and experimental approaches, multi-ion strategy for better battery performance, and also the involvement of in situ advanced characterization in the probing of the mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Whittingham, M.S.: Special editorial perspective: beyond li-ion battery chemistry. Chem. Rev. 120, 6328–6330 (2020). https://doi.org/10.1021/acs.chemrev.0c00438

    Article  Google Scholar 

  2. Yang, F.; Feng, X.; Liu, Y.; Kao, L.C.; Glans, P.; Yang, W.; Guo, J.: In-situ/operando (soft) X-ray spectroscopy study of beyond lithium-ion batteries. Energy Environ. Mater. (2021). https://doi.org/10.1002/eem2.12172

    Article  Google Scholar 

  3. Liu, Z.; Deng, Z.; He, G.; Wang, H.; Zhang, X.; Lin, J.; Qi, Y.; Liang, X.: Challenges and opportunities for carbon neutrality in China. Nat. Rev. Earth Environ. (2021). https://doi.org/10.1038/s43017-021-00244-x

    Article  Google Scholar 

  4. Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S.: Research development on sodium-ion batteries. Chem. Rev. 114, 11636–11682 (2014). https://doi.org/10.1021/cr500192f

    Article  Google Scholar 

  5. Tarascon, J.-M.; Armand, M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001). https://doi.org/10.1038/35104644

    Article  Google Scholar 

  6. Li, Z.; Fuhr, O.; Fichtner, M.; Zhao-Karger, Z.: Towards stable and efficient electrolytes for room-temperature rechargeable calcium batteries. Energy Environ. Sci. 12, 3496–3501 (2019). https://doi.org/10.1039/c9ee01699f

    Article  Google Scholar 

  7. Muldoon, J.; Bucur, C.B.; Gregory, T.: Quest for nonaqueous multivalent secondary batteries: magnesium and beyond. Chem. Rev. 114, 11683–11720 (2014). https://doi.org/10.1021/cr500049y

    Article  Google Scholar 

  8. Driscoll, D.M.; Dandu, N.K.; Hahn, N.T.; Seguin, T.J.; Persson, K.A.; Zavadil, K.R.; Curtiss, L.A.; Balasubramanian, M.: Rationalizing calcium electrodeposition behavior by quantifying ethereal solvation effects on Ca2+ coordination in well-dissociated electrolytes. J. Electrochem. Soc. 167, 160512 (2020). https://doi.org/10.1149/1945-7111/abc8e3

    Article  Google Scholar 

  9. Gummow, R.J.; Vamvounis, G.; Kannan, M.B.; He, Y.: Calcium-ion batteries: current state-of-the-art and future perspectives. Adv. Mater. 30, 1801702 (2018). https://doi.org/10.1002/adma.201801702

    Article  Google Scholar 

  10. Dompablo, M.E.A.; Ponrouch, A.; Johansson, P.; Palacín, M.R.: Achievements, challenges, and prospects of calcium batteries. Chem. Rev. 120, 6331–6357 (2020). https://doi.org/10.1021/acs.chemrev.9b00339

    Article  Google Scholar 

  11. Zhang, X.; Tang, Y.; Zhang, F.; Lee, C.: A novel aluminum-graphite dual-ion battery. Adv. Energy Mater. 6, 1502588 (2016). https://doi.org/10.1002/aenm.201502588

    Article  Google Scholar 

  12. Ponrouch, A.; Frontera, C.; Bardé, F.; Palacín, M.R.: Towards a calcium-based rechargeable battery. Nat. Mater. 15, 169–172 (2016). https://doi.org/10.1038/nmat4462

    Article  Google Scholar 

  13. Melemed, A.M.; Khurram, A.; Gallant, B.M.: Current understanding of nonaqueous electrolytes for calcium-based batteries. Batter. Supercaps. 3, 570–580 (2020). https://doi.org/10.1002/batt.201900219

    Article  Google Scholar 

  14. Ji, B.; He, H.; Yao, W.; Tang, Y.: Recent advances and perspectives on calcium-ion storage: key materials and devices. Adv. Mater. 33, 2005501 (2021). https://doi.org/10.1002/adma.202005501

    Article  Google Scholar 

  15. Wang, D.; Gao, X.; Chen, Y.; Jin, L.; Kuss, C.; Bruce, P.G.: Plating and stripping calcium in an organic electrolyte. Nat. Mater. 17, 16–20 (2018). https://doi.org/10.1038/nmat5036

    Article  Google Scholar 

  16. Wang, M.; Jiang, C.; Zhang, S.; Song, X.; Tang, Y.; Cheng, H.-M.: Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage. Nat. Chem. 10, 667–672 (2018). https://doi.org/10.1038/s41557-018-0045-4

    Article  Google Scholar 

  17. Yu, X.; Manthiram, A.: Toward reversible room-temperature calcium-ion batteries. Chemistry 4, 1200–1202 (2018). https://doi.org/10.1016/j.chempr.2018.05.009

    Article  Google Scholar 

  18. Cheng, H.; Sun, Q.; Li, L.; Zou, Y.; Wang, Y.; Cai, T.; Zhao, F.; Liu, G.; Ma, Z.; Wahyudi, W.; Li, Q.; Ming, J.: Emerging era of electrolyte solvation structure and interfacial model in batteries. ACS Energy Lett. 7, 490–513 (2022). https://doi.org/10.1021/acsenergylett.1c02425

    Article  Google Scholar 

  19. Lautar, A.K.; Bitenc, J.; Rejec, T.; Dominko, R.; Filhol, J.-S.; Doublet, M.-L.: Electrolyte reactivity in the double layer in mg batteries: an interface potential-dependent DFT study. J. Am. Chem. Soc. 142, 5146–5153 (2020). https://doi.org/10.1021/jacs.9b12474

    Article  Google Scholar 

  20. Kao, L.C.; Feng, X.; Ha, Y.; Yang, F.; Liu, Y.-S.; Hahn, N.T.; MacDougall, J.; Chao, W.; Yang, W.; Zavadil, K.R.; Guo, J.: In-situ/operando X-ray absorption spectroscopic investigation of the electrode/electrolyte interface on the molecular scale. Surf Sci 702, 121720 (2020). https://doi.org/10.1016/j.susc.2020.121720

    Article  Google Scholar 

  21. Yu, Z.; Juran, T.R.; Liu, X.; Han, K.S.; Wang, H.; Mueller, K.T.; Ma, L.; Xu, K.; Li, T.; Curtiss, L.A.; Cheng, L.: Solvation structure and dynamics of Mg(TFSI)2 aqueous electrolyte. Energy Environ. Mater. (2021). https://doi.org/10.1002/eem2.12174

    Article  Google Scholar 

  22. Hou, S.; Ji, X.; Gaskell, K.; Wang, P.; Wang, L.; Xu, J.; Sun, R.; Borodin, O.; Wang, C.: Solvation sheath reorganization enables divalent metal batteries with fast interfacial charge transfer kinetics. Science 374, 172–178 (2021). https://doi.org/10.1126/science.abg3954

    Article  Google Scholar 

  23. Qiu, H.; Du, X.; Zhao, J.; Wang, Y.; Ju, J.; Chen, Z.; Hu, Z.; Yan, D.; Zhou, X.; Cui, G.: Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019). https://doi.org/10.1038/s41467-019-13436-3

    Article  Google Scholar 

  24. Liu, C.; Xie, X.; Lu, B.; Zhou, J.; Liang, S.: Electrolyte strategies toward better zinc-ion batteries. ACS Energy Lett. 6, 1015–1033 (2021). https://doi.org/10.1021/acsenergylett.0c02684

    Article  Google Scholar 

  25. Yang, F.; Liu, Y.-S.; Feng, X.; Glans, P.-A.; Nasiatka, J.; Voronov, D.; Feng, J.; Chuang, Y.-D.; Padmore, H.; Guo, J.: In-situ/operando X-ray absorption spectroscopy for energy science at beamline 7.3.1 of the ALS. JSSRR 34, 306–314 (2021)

    Google Scholar 

  26. Jie, Y.; Tan, Y.; Li, L.; Han, Y.; Xu, S.; Zhao, Z.; Cao, R.; Ren, X.; Huang, F.; Lei, Z.; Tao, G.; Zhang, G.; Jiao, S.: Electrolyte solvation manipulation enables unprecedented room-temperature calcium-metal batteries. Angew. Chem. Int. Ed. 59, 12689–12693 (2020). https://doi.org/10.1002/anie.202002274

    Article  Google Scholar 

  27. Er, D.; Li, J.; Naguib, M.; Gogotsi, Y.; Shenoy, V.B.: Ti3C2 MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. ACS Appl. Mater. Inter. 6, 11173–11179 (2014). https://doi.org/10.1021/am501144q

    Article  Google Scholar 

  28. Xie, Y.; Dall’Agnese, Y.; Naguib, M.; Gogotsi, Y.; Barsoum, M.W.; Zhuang, H.L.; Kent, P.R.C.: Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano 8, 9606–9615 (2014). https://doi.org/10.1021/nn503921j

    Article  Google Scholar 

  29. Wang, Y.; Song, N.; Song, X.; Zhang, T.; Zhang, Q.; Li, M.: Metallic VO 2 monolayer as an anode material for Li, Na, K, Mg or Ca ion storage: a first-principle study. Rsc Adv. 8, 10848–10854 (2018). https://doi.org/10.1039/c8ra00861b

    Article  Google Scholar 

  30. Mortazavi, B.; Shahrokhi, M.; Zhuang, X.; Rabczuk, T.: Boron–graphdiyne: a superstretchable semiconductor with low thermal conductivity and ultrahigh capacity for Li, Na and Ca ion storage. J. Mater. Chem. A. 6, 11022–11036 (2018). https://doi.org/10.1039/c8ta02627k

    Article  Google Scholar 

  31. Salavati, M.; Rabczuk, T.: Application of highly stretchable and conductive two-dimensional 1T VS2 and VSe2 as anode materials for Li-, Na- and Ca-ion storage. Comp. Mater. Sci. 160, 360–367 (2019). https://doi.org/10.1016/j.commatsci.2019.01.018

    Article  Google Scholar 

  32. Wang, S.; Si, Y.; Yang, B.; Ruckenstein, E.; Chen, H.: Two-dimensional carbon-based auxetic materials for broad-spectrum metal-ion battery anodes. J. Phys. Chem. Lett. 10, 3269–3275 (2019). https://doi.org/10.1021/acs.jpclett.9b00905

    Article  Google Scholar 

  33. Wang, H.; Luo, W.; Tian, Z.; Ouyang, C.: First principles study of alkali and alkaline earth metal ions adsorption and diffusion on penta-graphene. Solid State Ion. 342, 115062 (2019). https://doi.org/10.1016/j.ssi.2019.115062

    Article  Google Scholar 

  34. Wu, L.; Zhang, H.; Zhou, J.: A simulation on the graphyne and its inorganic BN-like nanosheets as anode materials for Ca-ion batteries. Mol. Simulat. 47, 1–8 (2021). https://doi.org/10.1080/08927022.2021.1872787

    Article  Google Scholar 

  35. Chowdhury, C.; Gain, P.; Datta, A.: Evolutionary structure prediction-assisted design of anode materials for Ca-ion battery based on phosphorene. Phys. Chem. Chem. Phys. 23, 9466–9475 (2021). https://doi.org/10.1039/d1cp00094b

    Article  Google Scholar 

  36. Cao, Y.; Sharma, K.; Rajhi, A.A.; Alamri, S.; Anqi, A.E.; El-Shafay, A.S.; Aly, A.A.; Felemban, B.F.; Rashidi, S.; Derakhshandeh, M.: Boron-carbide nanosheets: promising anodes for Ca-ion batteries. J. Electroanal. Chem. (2021). https://doi.org/10.1016/j.jelechem.2021.115929

    Article  Google Scholar 

  37. Rao, Y.-C.; Yu, S.; Gu, X.; Duan, X.-M.: Prediction of MoO2 as high capacity electrode material for (Na, K, Ca)-ion batteries. Appl. Surf. Sci. 479, 64–69 (2019). https://doi.org/10.1016/j.apsusc.2019.01.206

    Article  Google Scholar 

  38. Hussain, T.; Olsson, E.; Alhameedi, K.; Cai, Q.; Karton, A.: Functionalized two-dimensional nanoporous graphene as efficient global anode materials for Li-, Na-, K-, Mg-, and Ca-ion batteries. J. Phys. Chem. C 124, 9734–9745 (2020). https://doi.org/10.1021/acs.jpcc.0c01216

    Article  Google Scholar 

  39. Muhammad, I.; Younis, U.; Wu, W.; Xie, H.; Khaliq, A.; Sun, Q.: Three-dimensional porous phosphorus-graphdiyne as a universal anode material for both K- and Ca-ion batteries with high performance. J. Power Sources 480, 228876 (2020). https://doi.org/10.1016/j.jpowsour.2020.228876

    Article  Google Scholar 

  40. Shakerzadeh, E.; Azizinia, L.: Can C24N24 cavernous nitride fullerene be a potential anode material for Li-, Na-, K-, Mg-, Ca-ion batteries? Chem. Phys. Lett. 764, 138241 (2021). https://doi.org/10.1016/j.cplett.2020.138241

    Article  Google Scholar 

  41. Wang, Y.; Tian, W.; Zhang, H.; Wang, Y.: Nb 2 N monolayer as a promising anode material for Li/Na/K/Ca-ion batteries: a DFT calculation. Phys. Chem. Chem. Phys. 23, 12288–12295 (2021). https://doi.org/10.1039/d1cp00993a

    Article  Google Scholar 

  42. Hu, Y.; Liu, Y.; Huang, Y.; Lin, H.: Flexible Si3C monolayer: a superior anode for high-performance non-lithium ion batteries. Colloids Surf. Physicochem. Eng. Aspects. 637, 128238 (2022). https://doi.org/10.1016/j.colsurfa.2021.128238

    Article  Google Scholar 

  43. Yao, Z.; Hegde, V.I.; Aspuru-Guzik, A.; Wolverton, C.: Discovery of calcium-metal alloy anodes for reversible Ca-ion batteries. Adv. Energy Mater. 9, 1802994 (2019). https://doi.org/10.1002/aenm.201802994

    Article  Google Scholar 

  44. Ponrouch, A.; Tchitchekova, D.; Frontera, C.; Bardé, F.; Dompablo, M.E.A.; Palacín, M.R.: Assessing Si-based anodes for Ca-ion batteries: electrochemical decalciation of CaSi2. Electrochem. Commun. 66, 75–78 (2016). https://doi.org/10.1016/j.elecom.2016.03.004

    Article  Google Scholar 

  45. Smeu, M.; Hossain, M.S.; Wang, Z.; Timoshevskii, V.; Bevan, K.H.; Zaghib, K.: Theoretical investigation of Chevrel phase materials for cathodes accommodating Ca2+ ions. J. Power Sources 306, 431–436 (2016). https://doi.org/10.1016/j.jpowsour.2015.12.009

    Article  Google Scholar 

  46. Juran, T.R.; Smeu, M.: Hybrid density functional theory modeling of Ca, Zn, and Al ion batteries using the Chevrel phase Mo 6 S 8 cathode. Phys. Chem. Chem. Phys. 19, 20684–20690 (2017). https://doi.org/10.1039/c7cp03378h

    Article  Google Scholar 

  47. Parija, A.; Prendergast, D.; Banerjee, S.: Evaluation of multivalent cation insertion in single- and double-layered polymorphs of V2O5. ACS Appl. Mater. Inter. 9, 23756–23765 (2017). https://doi.org/10.1021/acsami.7b05556

    Article  Google Scholar 

  48. Juran, T.R.; Smeu, M.: TiSe2 cathode for beyond Li-ion batteries. J. Power Sources 436, 226813 (2019). https://doi.org/10.1016/j.jpowsour.2019.226813

    Article  Google Scholar 

  49. Dompablo, M.E.A.; Krich, C.; Nava-Avendaño, J.; Palacín, M.R.; Bardé, F.: In quest of cathode materials for Ca ion batteries: the CaMO 3 perovskites (M = Mo, Cr, Mn, Fe Co, and Ni). Phys. Chem. Chem. Phys. 18, 19966–19972 (2016). https://doi.org/10.1039/c6cp03381d

    Article  Google Scholar 

  50. Juran, T.R.; Young, J.; Smeu, M.: Density functional theory modeling of MnO2 polymorphs as cathodes for multivalent ion batteries. J. Phys. Chem. C. 122, 8788–8795 (2018). https://doi.org/10.1021/acs.jpcc.8b00918

    Article  Google Scholar 

  51. Zhao, Z.; Yao, J.; Sun, B.; Zhong, S.; Lei, X.; Xu, B.; Ouyang, C.: First-principles identification of spinel CaCo2O4 as a promising cathode material for Ca-ion batteries. Solid State Ion. 326, 145–149 (2018). https://doi.org/10.1016/j.ssi.2018.10.004

    Article  Google Scholar 

  52. Park, H.; Bartel, C.J.; Ceder, G.; Zapol, P.: Layered transition metal oxides as Ca intercalation cathodes: a systematic first-principles evaluation. Adv. Energy Mater. 11, 2101698 (2021). https://doi.org/10.1002/aenm.202101698

    Article  Google Scholar 

  53. Torres, A.; Bardé, F.; Dompablo, M.E.A.: Evaluation of cobalt oxides for calcium battery cathode applications. Solid State Ion. 340, 115004 (2019). https://doi.org/10.1016/j.ssi.2019.115004

    Article  Google Scholar 

  54. Park, H.; Cui, Y.; Kim, S.; Vaughey, J.T.; Zapol, P.: Ca cobaltites as potential cathode materials for rechargeable Ca-ion batteries: theory and experiment. J. Phys. Chem. C. 124, 5902–5909 (2020). https://doi.org/10.1021/acs.jpcc.9b11192

    Article  Google Scholar 

  55. Torres, A.; Luque, F.J.; Tortajada, J.; Dompablo, M.E.A.: Analysis of minerals as electrode materials for Ca-based rechargeable batteries. Sci. Rep. UK 9, 9644 (2019). https://doi.org/10.1038/s41598-019-46002-4

    Article  Google Scholar 

  56. Kuganathan, N.; Chroneos, A.: Defects and dopants in CaFeSi2O6: classical and DFT simulations. Energies 13, 1285 (2020). https://doi.org/10.3390/en13051285

    Article  Google Scholar 

  57. Kuganathan, N.; Ganeshalingam, S.; Chroneos, A.: Defect, transport, and dopant properties of andradite garnet Ca3Fe2Si3O12. AIP Adv. 10, 075004 (2020). https://doi.org/10.1063/5.0012594

    Article  Google Scholar 

  58. Torres, A.; Casals, J.L.; Dompablo, M.E.A.: Enlisting potential cathode materials for rechargeable Ca batteries. Chem. Mater. 33, 2488–2497 (2021). https://doi.org/10.1021/acs.chemmater.0c04741

    Article  Google Scholar 

  59. Liu, F.; Wang, T.; Liu, X.; Fan, L.: Challenges and recent progress on key materials for rechargeable magnesium batteries. Adv. Energy Mater. 11, 2000787 (2021). https://doi.org/10.1002/aenm.202000787

    Article  Google Scholar 

  60. Park, H.; Zapol, P.: Thermodynamic and kinetic properties of layered-CaCo2O4 for the Ca-ion batteries: a systematic first-principles study. J. Mater. Chem. A 8, 21700–21710 (2020). https://doi.org/10.1039/d0ta07573f

    Article  Google Scholar 

  61. Kuperman, N.; Padigi, P.; Goncher, G.; Evans, D.; Thiebes, J.; Solanki, R.: High performance Prussian blue cathode for nonaqueous Ca-ion intercalation battery. J. Power Sources 342, 414–418 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.074

    Article  Google Scholar 

  62. Lipson, A.L.; Pan, B.; Lapidus, S.H.; Liao, C.; Vaughey, J.T.; Ingram, B.J.: Rechargeable Ca-ion batteries: a new energy storage system. Chem. Mater. 27, 8442–8447 (2015). https://doi.org/10.1021/acs.chemmater.5b04027

    Article  Google Scholar 

  63. Tchitchekova, D.S.; Ponrouch, A.; Verrelli, R.; Broux, T.; Frontera, C.; Sorrentino, A.; Bardé, F.; Biskup, N.; Dompablo, M.E.A.; Palacín, M.R.: Electrochemical intercalation of calcium and magnesium in TiS2: fundamental studies related to multivalent battery applications. Chem. Mater. 30, 847–856 (2018). https://doi.org/10.1021/acs.chemmater.7b04406

    Article  Google Scholar 

  64. Park, J.; Xu, Z.; Yoon, G.; Park, S.K.; Wang, J.; Hyun, H.; Park, H.; Lim, J.; Ko, Y.; Yun, Y.S.; Kang, K.: Stable and high-power calcium-ion batteries enabled by calcium intercalation into graphite. Adv. Mater. 32, 1904411 (2019). https://doi.org/10.1002/adma.201904411

    Article  Google Scholar 

  65. Kim, S.; Yin, L.; Lee, M.H.; Parajuli, P.; Blanc, L.; Fister, T.T.; Park, H.; Kwon, B.J.; Ingram, B.J.; Zapol, P.; Klie, R.F.; Kang, K.; Nazar, L.F.; Lapidus, S.H.; Vaughey, J.T.: High-voltage phosphate cathodes for rechargeable Ca-ion batteries. ACS Energy Lett. 5, 3203–3211 (2020). https://doi.org/10.1021/acsenergylett.0c01663

    Article  Google Scholar 

  66. Wang, J.; Tan, S.; Xiong, F.; Yu, R.; Wu, P.; Cui, L.; An, Q.: VOPO4·2H2O as a new cathode material for rechargeable Ca-ion batteries. Chem. Commun. 56, 3805–3808 (2020). https://doi.org/10.1039/d0cc00772b

    Article  Google Scholar 

  67. Xu, Z.-L.; Park, J.; Wang, J.; Moon, H.; Yoon, G.; Lim, J.; Ko, Y.-J.; Cho, S.-P.; Lee, S.-Y.; Kang, K.: A new high-voltage calcium intercalation host for ultra-stable and high-power calcium rechargeable batteries. Nat. Commun. 12, 3369 (2021). https://doi.org/10.1038/s41467-021-23703-x

    Article  Google Scholar 

  68. Prabakar, S.J.R.; Park, W.-B.; Seo, J.Y.; Singh, S.P.; Ahn, D.; Sohn, K.-S.; Pyo, M.: Ultra-stable Ti2O(PO4)2(H2O) as a viable new Ca2+ storage electrode material for calcium-ion batteries. Energy Storage Mater. 43, 85–96 (2021). https://doi.org/10.1016/j.ensm.2021.08.035

    Article  Google Scholar 

  69. Liu, X.; Elia, G.A.; Passerini, S.: Evaluation of counter and reference electrodes for the investigation of Ca battery materials. J. Power Sources Adv. 2, 100008 (2020). https://doi.org/10.1016/j.powera.2020.100008

    Article  Google Scholar 

  70. Xu, X.; Duan, M.; Yue, Y.; Li, Q.; Zhang, X.; Wu, L.; Wu, P.; Song, B.; Mai, L.: Bilayered Mg0.25V2O5·H2O as a stable cathode for rechargeable Ca-ion batteries. ACS Energy Lett. 4, 1328–1335 (2019). https://doi.org/10.1021/acsenergylett.9b00830

    Article  Google Scholar 

  71. Hyoung, J.; Heo, J.W.; Jeon, B.; Hong, S.-T.: Silver vanadium bronze, β-Ag0.33V2O5: crystal-water-free high-capacity cathode material for rechargeable Ca-ion batteries. J. Mater. Chem. A. 9, 20776–20782 (2021). https://doi.org/10.1039/d1ta03881h

    Article  Google Scholar 

  72. Purbarani, M.E.; Hyoung, J.; Hong, S.-T.: Crystal-water-free potassium vanadium bronze (K0.5V2O5) as a cathode material for Ca-ion batteries. ACS Appl. Energy Mater. 4, 7487–7491 (2021). https://doi.org/10.1021/acsaem.1c01158

    Article  Google Scholar 

  73. Vo, T.N.; Kim, H.; Hur, J.; Choi, W.; Kim, I.T.: Surfactant-assisted ammonium vanadium oxide as a superior cathode for calcium-ion batteries. J. Mater. Chem. A. 6, 22645–22654 (2018). https://doi.org/10.1039/c8ta07831a

    Article  Google Scholar 

  74. Dompablo, M.E.A.; Krich, C.; Nava-Avendaño, J.; Biškup, N.; Palacín, M.R.; Bardé, F.: A joint computational and experimental evaluation of CaMn2O4 polymorphs as cathode materials for Ca ion batteries. Chem. Mater. 28, 6886–6893 (2016). https://doi.org/10.1021/acs.chemmater.6b02146

    Article  Google Scholar 

  75. Kwon, B.J.; Yin, L.; Bartel, C.J.; Kumar, K.; Parajuli, P.; Gim, J.; Kim, S.; Wu, Y.A.; Klie, R.F.; Lapidus, S.H.; Key, B.; Ceder, G.; Cabana, J.: Intercalation of Ca into a highly defective manganese oxide at room temperature. Chem. Mater. 34, 836–846 (2022). https://doi.org/10.1021/acs.chemmater.1c03803

    Article  Google Scholar 

  76. Pathreeker, S.; Reed, S.; Chando, P.; Hosein, I.D.: A study of calcium ion intercalation in Perovskite calcium manganese oxide. J. Electroanal. Chem. 874, 114453 (2020). https://doi.org/10.1016/j.jelechem.2020.114453

    Article  Google Scholar 

  77. Hancock, J.C.; Griffith, K.J.; Choi, Y.; Bartel, C.J.; Lapidus, S.H.; Vaughey, J.T.; Ceder, G.; Poeppelmeier, K.R.: Expanding the ambient-pressure phase space of CaFe2O4-type sodium postspinel host-guest compounds. ACS Org. Inorg. Au. (2021). https://doi.org/10.1021/acsorginorgau.1c00019

    Article  Google Scholar 

  78. Nolis, G.; Gallardo-Amores, J.M.; Serrano-Sevillano, J.; Jahrman, E.; Yoo, H.D.; Hu, L.; Hancock, J.C.; Bolotnikov, J.; Kim, S.; Freeland, J.W.; Liu, Y.-S.; Poeppelmeier, K.R.; Seidler, G.T.; Guo, J.; Alario-Franco, M.A.; Casas-Cabanas, M.; Morán, E.; Cabana, J.: Factors defining the intercalation electrochemistry of CaFe2O4-type manganese oxides. Chem. Mater. 32, 8203–8215 (2020). https://doi.org/10.1021/acs.chemmater.0c01858

    Article  Google Scholar 

  79. Lipson, A.L.; Kim, S.; Pan, B.; Liao, C.; Fister, T.T.; Ingram, B.J.: Calcium intercalation into layered fluorinated sodium iron phosphate. J. Power Sources. 369, 133–137 (2017). https://doi.org/10.1016/j.jpowsour.2017.09.081

    Article  Google Scholar 

  80. Chae, M.S.; Nimkar, A.; Shpigel, N.; Gofer, Y.; Aurbach, D.: High Performance aqueous and nonaqueous Ca-ion cathodes based on fused-ring aromatic carbonyl compounds. ACS Energy Lett. 6, 2659–2665 (2021). https://doi.org/10.1021/acsenergylett.1c01010

    Article  Google Scholar 

  81. Cang, R.; Zhao, C.; Ye, K.; Yin, J.; Zhu, K.; Yan, J.; Gao, Y.; Wang, G.; Cao, D.: Aqueous calcium-ion battery based on a mesoporous organic anode and a manganite cathode with long cycling performance. Chemsuschem 13, 3911–3918 (2020). https://doi.org/10.1002/cssc.202000812

    Article  Google Scholar 

  82. Shi, Z.; Wu, J.; Ni, M.; Guo, Q.; Zan, F.; Xia, H.: Superior performance of calcium birnessite by electrochemical conversion as cathode for aqueous calcium ion battery. Mater. Res. Bull. 144, 111475 (2021). https://doi.org/10.1016/j.materresbull.2021.111475

    Article  Google Scholar 

  83. Cabello, M.; Nacimiento, F.; Alcántara, R.; Lavela, P.; Vicente, C.P.; Tirado, J.L.: Applicability of molybdite as an electrode material in calcium batteries: a structural study of layer-type CaxMoO3. Chem. Mater. 30, 5853–5861 (2018). https://doi.org/10.1021/acs.chemmater.8b01116

    Article  Google Scholar 

  84. Wu, S.; Zhang, F.; Tang, Y.: A novel calcium-ion battery based on dual-carbon configuration with high working voltage and long cycling life. Adv. Sci. 5, 1701082 (2018). https://doi.org/10.1002/advs.201701082

    Article  Google Scholar 

  85. Ta, K.; Zhang, R.; Shin, M.; Rooney, R.T.; Neumann, E.K.; Gewirth, A.A.: Understanding Ca electrodeposition and speciation processes in nonaqueous electrolytes for next-generation Ca-ion Batteries. ACS Appl. Mater. Inter. 11, 21536–21542 (2019). https://doi.org/10.1021/acsami.9b04926

    Article  Google Scholar 

  86. Shyamsunder, A.; Blanc, L.E.; Assoud, A.; Nazar, L.F.: Reversible calcium plating and stripping at room temperature using a borate salt. ACS Energy Lett. 4, 2271–2276 (2019). https://doi.org/10.1021/acsenergylett.9b01550

    Article  Google Scholar 

  87. Bitenc, J.; Scafuri, A.; Pirnat, K.; Lozinšek, M.; Jerman, I.; Grdadolnik, J.; Fraisse, B.; Berthelot, R.; Stievano, L.; Dominko, R.: Electrochemical performance and mechanism of calcium metal-organic battery. Batter Supercaps. 4, 214–220 (2021). https://doi.org/10.1002/batt.202000197

    Article  Google Scholar 

  88. Yamijala, S.S.R.K.C.; Kwon, H.; Guo, J.; Wong, B.M.: Stability of calcium ion battery electrolytes: predictions from Ab initio molecular dynamics simulations. ACS Appl. Mater. Inter. 13, 13114–13122 (2021). https://doi.org/10.1021/acsami.0c21716

    Article  Google Scholar 

  89. Hahn, N.T.; Self, J.; Driscoll, D.M.; Dandu, N.; Han, K.S.; Murugesan, V.; Mueller, K.T.; Curtiss, L.A.; Balasubramanian, M.; Persson, K.A.; Zavadil, K.R.: Concentration-dependent ion correlations impact the electrochemical behavior of calcium battery electrolytes. Phys. Chem. Chem. Phys. 24, 674–686 (2021). https://doi.org/10.1039/d1cp04370f

    Article  Google Scholar 

  90. Hahn, N.T.; Driscoll, D.M.; Yu, Z.; Sterbinsky, G.E.; Cheng, L.; Balasubramanian, M.; Zavadil, K.R.: Influence of ether solvent and anion coordination on electrochemical behavior in calcium battery electrolytes. ACS Appl. Energy Mater. 3, 8437–8447 (2020). https://doi.org/10.1021/acsaem.0c01070

    Article  Google Scholar 

  91. Kisu, K.; Kim, S.; Shinohara, T.; Zhao, K.; Züttel, A.; Orimo, S.: Monocarborane cluster as a stable fluorine-free calcium battery electrolyte. Sci. Rep. UK 11, 7563 (2021). https://doi.org/10.1038/s41598-021-86938-0

    Article  Google Scholar 

  92. Araujo, R.B.; Thangavel, V.; Johansson, P.: Towards novel calcium battery electrolytes by efficient computational screening. Energy Storage Mater. 39, 89–95 (2021). https://doi.org/10.1016/j.ensm.2021.04.015

    Article  Google Scholar 

  93. Biria, S.; Pathreeker, S.; Genier, F.S.; Hosein, I.D.: A highly conductive and thermally stable ionic liquid gel electrolyte for calcium-ion batteries. ACS Appl. Polym. Mater. 2, 2111–2118 (2020). https://doi.org/10.1021/acsapm.9b01223

    Article  Google Scholar 

  94. Gao, X.; Liu, X.; Mariani, A.; Elia, G.A.; Lechner, M.; Streb, C.; Passerini, S.: Alkoxy-functionalized ionic liquid electrolytes: understanding ionic coordination of calcium ion speciation for the rational design of calcium electrolytes. Energy Environ. Sci. 13, 2559–2569 (2020). https://doi.org/10.1039/d0ee00831a

    Article  Google Scholar 

  95. Gheytani, S.; Liang, Y.; Wu, F.; Jing, Y.; Dong, H.; Rao, K.K.; Chi, X.; Fang, F.; Yao, Y.: An aqueous Ca-ion battery. Adv. Sci. 4, 1700465 (2017). https://doi.org/10.1002/advs.201700465

    Article  Google Scholar 

  96. Adil, Md.; Sarkar, A.; Roy, A.; Panda, M.R.; Nagendra, A.; Mitra, S.: Practical aqueous calcium-ion battery full-cells for future stationary storage. ACS Appl. Mater. Inter. 12, 11489–11503 (2020). https://doi.org/10.1021/acsami.9b20129

    Article  Google Scholar 

  97. Wang, P.; Wang, H.; Chen, Z.; Wu, J.; Luo, J.; Huang, Y.: Flexible aqueous Ca-ion full battery with super-flat discharge voltage plateau. Nano Res. 15, 701–708 (2022). https://doi.org/10.1007/s12274-021-3550-5

    Article  Google Scholar 

  98. Tang, X.; Zhou, D.; Zhang, B.; Wang, S.; Li, P.; Liu, H.; Guo, X.; Jaumaux, P.; Gao, X.; Fu, Y.; Wang, C.; Wang, C.; Wang, G.: A universal strategy towards high–energy aqueous multivalent–ion batteries. Nat. Commun. 12, 2857 (2021). https://doi.org/10.1038/s41467-021-23209-6

    Article  Google Scholar 

  99. Tong, Z.; Kang, T.; Wan, Y.; Yang, R.; Wu, Y.; Shen, D.; Liu, S.; Tang, Y.; Lee, C.: A Ca-ion electrochromic battery via a water-in-salt electrolyte. Adv. Funct. Mater. 31, 2104639 (2021). https://doi.org/10.1002/adfm.202104639

    Article  Google Scholar 

  100. Wu, N.; Yao, W.; Song, X.; Zhang, G.; Chen, B.; Yang, J.; Tang, Y.: A calcium-ion hybrid energy storage device with high capacity and long cycling life under room temperature. Adv. Energy Mater. 9, 1803865 (2019). https://doi.org/10.1002/aenm.201803865

    Article  Google Scholar 

  101. Yu, X.; Boyer, M.J.; Hwang, G.S.; Manthiram, A.: Toward a reversible calcium-sulfur battery with a lithium-ion mediation approach. Adv. Energy Mater. 9, 1803794 (2019). https://doi.org/10.1002/aenm.201803794

    Article  Google Scholar 

  102. Lang, J.; Jiang, C.; Fang, Y.; Shi, L.; Miao, S.; Tang, Y.: Room-temperature rechargeable ca-ion based hybrid batteries with high rate capability and long-term cycling life. Adv. Energy Mater. 9, 1901099 (2019). https://doi.org/10.1002/aenm.201901099

    Article  Google Scholar 

  103. Melemed, A.M.; Skiba, D.A.; Gallant, B.M.: Toggling calcium plating activity and reversibility through modulation of Ca2+ speciation in borohydride-based electrolytes. J. Phys. Chem. C 126, 892–902 (2022). https://doi.org/10.1021/acs.jpcc.1c09400

    Article  Google Scholar 

  104. Zhou, D.; Tang, X.; Zhang, X.; Zhang, F.; Wu, J.; Kang, F.; Li, B.; Wang, G.: Multi-ion strategy toward highly durable calcium/sodium–sulfur hybrid battery. Nano Lett. 21, 3548–3556 (2021). https://doi.org/10.1021/acs.nanolett.1c00448

    Article  Google Scholar 

  105. Proffit, D.L.; Fister, T.T.; Kim, S.; Pan, B.; Liao, C.; Vaughey, J.T.: Utilization of Ca K-Edge X-ray absorption near edge structure to identify intercalation in potential multivalent battery materials. J. Electrochem. Soc. 163, A2508–A2514 (2016). https://doi.org/10.1149/2.0121613jes

    Article  Google Scholar 

  106. Yang, F.; Feng, X.; Liu, Y.-S.; Glans, P.-A.; Guo, J.: In situ/operando soft x-ray spectroscopy of chemical interfaces in gas and liquid environments. Mrs Bull. (2021). https://doi.org/10.1557/s43577-021-00155-8

    Article  Google Scholar 

  107. Yang, F.; Liu, Y.-S.; Feng, X.; Qian, K.; Kao, L.C.; Ha, Y.; Hahn, N.T.; Seguin, T.J.; Tsige, M.; Yang, W.; Zavadil, K.R.; Persson, K.A.; Guo, J.: Probing calcium solvation by XAS MD and DFT calculations. RSC Adv. 10, 27315–27321 (2020). https://doi.org/10.1039/d0ra05905f

    Article  Google Scholar 

  108. Park, M.J.; Asl, H.Y.; Manthiram, A.: Multivalent-ion versus proton insertion into battery electrodes. ACS Energy Lett. 5, 2367–2375 (2020). https://doi.org/10.1021/acsenergylett.0c01021

    Article  Google Scholar 

  109. Li, J.; Han, C.; Ou, X.; Tang, Y.: Concentrated electrolyte for high-performance Ca-ion battery based on organic anode and graphite cathode. Angew. Chem. Int. Ed. (2022). https://doi.org/10.1002/anie.202116668

    Article  Google Scholar 

  110. Yang, F.; Jiang, Z.; He, Q.; Zhang, Z.; Zhou, Y.; Karapetrova, E.; Soucek, M.D.; Foster, M.D.: Following the morphological disruption by an electrolyte of a buried interface. ACS Appl. Mater. Inter. 11, 3555–3564 (2018). https://doi.org/10.1021/acsami.8b18009

    Article  Google Scholar 

  111. Zhou, Y.; He, Q.; Zhang, F.; Yang, F.; Narayanan, S.; Yuan, G.; Dhinojwala, A.; Foster, M.D.: Modifying surface fluctuations of polymer melt films with substrate modification. ACS Macro. Lett. 6, 915–919 (2017). https://doi.org/10.1021/acsmacrolett.7b00459

    Article  Google Scholar 

  112. Steinrück, H.-G.; Takacs, C.J.; Kim, H.-K.; Mackanic, D.G.; Holladay, B.; Cao, C.; Narayanan, S.; Dufresne, E.M.; Chushkin, Y.; Ruta, B.; Zontone, F.; Will, J.; Borodin, O.; Sinha, S.K.; Srinivasan, V.; Toney, M.F.: Concentration and velocity profiles in a polymeric lithium-ion battery electrolyte. Energy Environ. Sci. 13, 4312–4321 (2020). https://doi.org/10.1039/d0ee02193h

    Article  Google Scholar 

  113. Yang, F.; Presto, D.; Pan, Y.; Liu, K.; Zhou, L.; Narayanan, S.; Zhu, Y.; Peng, Z.; Soucek, M.D.; Tsige, M.; Foster, M.D.: Proximity to graphene dramatically alters polymer dynamics. Macromolecules 52, 5074–5085 (2019). https://doi.org/10.1021/acs.macromol.9b00317

    Article  Google Scholar 

Download references

Acknowledgements

This work was support as part of the Joint Center for Energy Storage Research (JCESR), an Energy Innovation Hub funded by the US Department of Energy (DOE), Office of Science, Basic Energy Sciences. Some of the soft XAS and RIXS measurements are performed on the beamlines of 7.3.1 and 8.0.1.4. This research used resources of the Advanced Light Source and Molecular Foundry, the US DOE Office of Science User Facilities under Contract No. DE-AC02-05CH11231. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US DOE’s National Nuclear Security Administration under contract DE-NA0003525. This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the US Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghua Guo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Feng, X., Zhuo, Z. et al. Ca2+ Solvation and Electrochemical Solid/Electrolyte Interphase Formation Toward the Multivalent-Ion Batteries. Arab J Sci Eng 48, 7243–7262 (2023). https://doi.org/10.1007/s13369-022-07597-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07597-5

Keywords

Navigation