Skip to main content
Log in

Finite Element Simulation of Rutting in Calcium Carbide Residue-Stabilized Expansive Subgrade

  • RESEARCH ARTICLE-CIVIL ENGINEERING
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The mechanical characteristics of the granular and subgrade layers contribute significantly as the structural support offered to unpaved or thin-surfaced pavement systems is crucial. The rut contributed by the expansive clay and calcium carbide residue (CCR)-stabilized clay (9% by dry weight of soil) is quantified by the laboratory wheel tracking test (WTT) facility. The optimization of CCR for the expansive clay stabilization was marked based on the improvement in workability, swell-shrink response, and strength characteristics. The swell potential of expansive clay was reduced from 7.8 to 0.25% with the addition of 9% CCR tested under a surcharge of 6.25 kPa, and the linear shrinkage strain of the clay was reduced by 63%. The rutting observed on expansive clay was reduced by 88% due to the increased cementation and rigidity in the 9% CCR-stabilized soil. The finite element analysis using Plaxis®3D and 2D was used for modelling the unsaturated subgrade layer. The rut depth predicted by simulation agrees well with the laboratory findings. The study's adopted model makes it easier to comprehend the rut depth under repeated wheel load rather than the laborious and expensive lab WTT. The single factorial sensitivity analysis showed that elastic modulus significantly controlled the rutting of clay and stabilized clay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gopalakrishnan, K.; Thompson, M.R.: Subgrade stress ratios as airfield pavement rutting performance indicators. Can. J. Civ. Eng. 34(2), 189–198 (2007). https://doi.org/10.1139/L06-134

    Article  Google Scholar 

  2. Qiu, Y.; Dennis, N.D.; Elliott, R.P.: Design criteria for permanent deformation of subgrade soils in flexible pavements for low-volume roads. Soils Found. 40(1), 1–10 (2000). https://doi.org/10.3208/sandf.40.1

    Article  Google Scholar 

  3. da Francisco Silva, M.; Pereira Ribeiro, M.M.; Paula Furlan, A.; Pessa Fabbri, G.T.: Effect of compaction water content and stress ratio on permanent deformation of a subgrade lateritic soil. Transp. Geotech. 26, 100443 (2020). https://doi.org/10.1016/j.trgeo.2020.100443

    Article  Google Scholar 

  4. Yesuf, G.Y.; Hoff, I.: Finite element modelling for prediction of permanent strains in fine-grained subgrade soils. Road Mater. Pavement Des. 16(2), 392–404 (2015). https://doi.org/10.1080/14680629.2015.1013053

    Article  Google Scholar 

  5. Du, Y.J.; Zhang, Y.Y.; Liu, S.Y.: Investigation of strength and california bearing ratio properties of Natural soils treated by Calcium Carbide Residue (2011)

  6. Latifi, N.; Meehan, C.L.: Strengthening of montmorillonitic and kaolinitic clays with calcium carbide residue: a sustainable additive for soil stabilization, pp. 154–163 (2017). https://doi.org/10.1061/9780784480441.017

  7. Kampala, A.; Horpibulsuk, S.; Prongmanee, N.; Chinkulkijniwat, A.: Influence of wet-dry cycles on compressive strength of calcium carbide residue-fly ash stabilized clay. J. Mater. Civ. Eng. 26(4), 633–643 (2014). https://doi.org/10.1061/(asce)mt.1943-5533.0000853

    Article  Google Scholar 

  8. Jaturapitakkul, C.; Roongreung, B.: Cementing material from calcium carbide residue-rice husk ash. J. Mater. Civ. Eng. 15(5), 470–475 (2003). https://doi.org/10.1061/(asce)0899-1561(2003)15:5(470)

    Article  Google Scholar 

  9. Horpibulsuk, S.; Phetchuay, C.; Chinkulkijniwat, A.: Soil stabilization by calcium carbide residue and fly ash. J. Mater. Civ. Eng. 24(2), 184–193 (2012). https://doi.org/10.1061/(asce)mt.1943-5533.0000370

    Article  Google Scholar 

  10. Latifi, N.; Vahedifard, F.; Ghazanfari, E.; Rashid, A.S.A.: Sustainable usage of calcium carbide residue for stabilization of clays. J. Mater. Civ. Eng. 30(6), 04018099 (2018). https://doi.org/10.1061/(asce)mt.1943-5533.0002313

    Article  Google Scholar 

  11. Noolu, V.; HeeraLal, M.; Pillai, R.J.: Resilient modulus of clayey subgrade soils treated with calcium carbide residue. Int. J. Geotech. Eng. 15(3), 288–297 (2021). https://doi.org/10.1080/19386362.2018.1512230

    Article  Google Scholar 

  12. Das, S.; Kim, G.W.; Hwang, H.Y.; Verma, P.P.; Kim, P.J.: Cropping with slag to address soil, environment, and food security. Front. Microbiol. 10, 1320–1320 (2019). https://doi.org/10.3389/fmicb.2019.01320

    Article  Google Scholar 

  13. Jiang, Qi., et al.: Solidification/stabilization of soil heavy metals by alkaline industrial wastes: a critical review. Environ. Pollut. (2022). https://doi.org/10.1016/j.envpol.2022.120094

    Article  Google Scholar 

  14. Radhakrishnan, V.; Chowdari, G.S.; Reddy, K.S.; Chattaraj, R.: Evaluation of wheel tracking and field rutting susceptibility of dense bituminous mixes. Road Mater. Pavement Des. 20(1), 90–109 (2019). https://doi.org/10.1080/14680629.2017.1374998

    Article  Google Scholar 

  15. Xue, B.; Xu, J.; Pei, J.; Zhang, J.; Li, R.: Investigation on the micromechanical response of asphalt mixture during permanent deformation based on 3D virtual wheel tracking test. Constr. Build. Mater. (2021). https://doi.org/10.1016/j.conbuildmat.2020.121031

    Article  Google Scholar 

  16. Yeo, Y.S.; Jitsangiam, P.; Nikraz, H.: Erodability of stabilised pavements using the wheel tracking test. International Conference on Advances in Geotechnical Engineering, Perth, Australia, pp. 357–362 (2011). https://espace.curtin.edu.au/bitstream/handle/20.500.11937/10818/168854_42265_63700.pdf?sequence=2&isAllowed=y

  17. Nasser Jaffer, G.: Behaviour of unsaturated subgrade soil under highway load. Djes 12(1), 23–33 (2019). https://doi.org/10.24237/djes.2019.12104

    Article  Google Scholar 

  18. Wu, Z.; Chen, X.; Yang, X.: Finite element simulation of structural performance on flexible pavements with stabilized base/treated subbase materials under accelerated loading. Louisiana Transportation Research Center, Report no. 07-IP (2011)

  19. ASTM D4318, ASTM D 4318-10 and A. D4318-05. Standard test methods for liquid limit, plastic limit, and plasticity index of soils. Report, vol. 04, pp. 1–14 (2005). https://doi.org/10.1520/D4318-10

  20. ASTM. D4186/D4186M-12. Standard test method for one-dimensional consolidation properties of saturated cohesive soils using controlled-strain loading. ASTM Int., vol. 2458000, pp. 1–18 (2012). https://doi.org/10.1520/D4186

  21. TxDOT. Determining the bar linear shrinkage of soils TEX-107-E (1999).

  22. ASTM D2166/D2166M. Standard test method for unconfined compressive strength of cohesive soil. ASTM Int. (2016). https://doi.org/10.1520/D2166

  23. Method, S. T.: ASTM-D1883−16: standard test method for California bearing ratio test of lab compacted soil. ASTM Int., vol. D1883, no. 16, pp. 1–14 (2016). https://doi.org/10.1520/D1883-16

  24. Singh, P.; Swamy, A.K.: Probabilistic approach to characterise laboratory rutting behaviour of asphalt concrete mixtures. Int. J. Pavement Eng. 21(3), 384–396 (2020). https://doi.org/10.1080/10298436.2018.1480780

    Article  Google Scholar 

  25. Shan, A.; Hafeez, I.; Hussan, S.; Jamil, M.B.: Predicting the laboratory rutting response of asphalt mixtures using different neural network algorithms. Int. J. Pavement Eng. (2020). https://doi.org/10.1080/10298436.2020.1830282

    Article  Google Scholar 

  26. Asim, M.; Ahmad, M.; Alam, M.; Ullah, S.; Iqbal, M.J.; Ali, S.: Prediction of rutting in flexible pavements using finite element method. Civ. Eng. J. 7(8), 1310–1326 (2021). https://doi.org/10.28991/cej-2021-03091727

    Article  Google Scholar 

  27. Abu Al-Rub, R.K.; Darabi, M.K.; Huang, C.W.; Masad, E.A.; Little, D.N.: Comparing finite element and constitutive modelling techniques for predicting rutting of asphalt pavements. Int. J. Pavement Eng. 13(4), 322–338 (2012). https://doi.org/10.1080/10298436.2011.566613

    Article  Google Scholar 

  28. Raja, P.S.K.; Thyagaraj, T.: Sulfate effects on sulfate-resistant cement–treated expansive soil. Bull. Eng. Geol. Environ. 79(5), 2367–2380 (2020). https://doi.org/10.1007/s10064-019-01714-9

    Article  Google Scholar 

  29. Dash, S.K.; Hussain, M.: Lime stabilization of soils: reappraisal. J. Mater. Civ. Eng. 24(6), 707–714 (2012). https://doi.org/10.1061/(ASCE)MT.1943-5533.0000431

    Article  Google Scholar 

  30. Ashango, A.A.; Patra, N.R.: Behavior of expansive soil treated with steel slag, rice husk ash, and lime. J. Mater. Civ. Eng. 28(7), 06016008 (2016). https://doi.org/10.1061/(asce)mt.1943-5533.0001547

    Article  Google Scholar 

  31. Ikechukwu, A.F.; Hassan, M.M.; Moubarak, A.: Resilient modulus and microstructure of unsaturated expansive subgrade stabilized with activated fly ash. Int. J. Geotech. Eng. 15(8), 915–938 (2021). https://doi.org/10.1080/19386362.2019.1656919

    Article  Google Scholar 

  32. Horpibulsuk, S.; Phetchuay, C.; Chinkulkijniwat, A.; Cholaphatsorn, A.: Strength development in silty clay stabilized with calcium carbide residue and fly ash. Soils Found. 53(4), 477–486 (2013). https://doi.org/10.1016/j.sandf.2013.06.001

    Article  Google Scholar 

  33. Lytton, R.L.; Luo, X.; Saha, S.; Chen, Y.; Deng, Y.; Gu, F.; Ling, M.: Proposed Enhancements to Pavement ME Design: Improved Consideration of the Influence of Subgrade and Unbound Layers on Pavement Performance. The National Academies Press, Washington (2019) https://doi.org/10.17226/25583

    Book  Google Scholar 

  34. Borden, R.; Cote, B.; Gabr, M.; Park, Y.; Pyo, S.; Robinson, B.: Establishment of subgrade undercut criteria and performance of alternative stabilization measure (2010). http://trid.trb.org/view.aspx?id=1090468

Download references

Acknowledgements

The first author gratefully acknowledges financial support from the Ministry of Human Resource Development (MHRD), the Government of India, and the National Institute of Technology Warangal.

Author information

Authors and Affiliations

Authors

Contributions

AGS conducted a laboratory study and prepared the draft of the manuscript. SMK carried out the numerical analysis. MHL reviewed and prepared the final draft of the manuscript.

Corresponding author

Correspondence to A. G. Sharanya.

Ethics declarations

Conflict of interest

We wish to confirm that there are no known conflicts of interest associated with this publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharanya, A.G., Mani Krishna, S. & Heeralal, M. Finite Element Simulation of Rutting in Calcium Carbide Residue-Stabilized Expansive Subgrade. Arab J Sci Eng 48, 12875–12889 (2023). https://doi.org/10.1007/s13369-022-07595-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07595-7

Keywords

Navigation