Skip to main content
Log in

Developing Low-Carbon Composite Cement Concretes (LC4) Using Continuous Particle Packing Approach

  • Research Article-civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

It is known that optimum packing of coarse and finer fractions in grading of aggregates has proved to improve the mechanical, durability and sustainable properties of concretes. In the present work, composite cement (CC) prepared by interblending of fly ash (FA) and granulated blast furnace slag (GBFS) with ordinary Portland cement (OPC) was used to prepare four grades of CC concretes, viz. M20, M30, M40 and M50, based on guidelines recommended by three international standards, viz. Indian Standard 10262:2019 (IS), American Concrete Institute 211.1-91:2000 (ACI), British Standard 8500-2:2015 (BS) and the reference modified Andreassen model (MAM) through ideal packing curves. The main aim of this study is to establish the influence of ideal gradation of total particulate matrix of concrete constituents on fresh, mechanical and sustainable properties of concretes. In the design of MAM-based concrete mixes, the total particulate matter comprising of coarse aggregates, fine aggregates, cement, FA and GBFS was optimized to match the ideal packing curves of MAM. The particle size distribution curves obtained for total particulate matrix of four grades of concretes designed as per IS, ACI and BS are compared with ideal packing curves of MAM. The concrete mixes designed as per MAM showed better sustainable properties and comparable mechanical properties with respect to concrete mixes designed using other international standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

All data, models and code generated or used during the study appear in the submitted article.

References

  1. Shubbar, A.A.; Jafer, H.; Dulaimi, A.; Hashim, K.; Atherton, W.; Sadique, M.: The development of a low carbon binder produced from the ternary blending of cement, ground granulated blast furnace slag and high calcium fly ash: An experimental and statistical approach. Constr. Build. Mater. 187, 1051–1060 (2018). https://doi.org/10.1016/j.conbuildmat.2018.08.021

    Article  Google Scholar 

  2. Gholampour, A.; Ozbakkaloglu, T.: Performance of sustainable concretes containing very high volume Class-F fly ash and ground granulated blast furnace slag. J. Clean. Prod. 162, 1407–1417 (2017). https://doi.org/10.1016/j.jclepro.2017.06.087

    Article  Google Scholar 

  3. Robalo, K.; Soldado, E.; Costa, H.; do Carmo, R.; Alves, H.; Júlio, E.: Efficiency of cement content and of compactness on mechanical performance of low cement concrete designed with packing optimization. Constr. Build. Mater. 266, 121077 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121077

    Article  Google Scholar 

  4. Karadumpa, C.S.; Pancharathi, R.K.: Influence of particle packing theories on strength and microstructure properties of composite cement-based mortars. J. Mater. Civ. Eng. 33(10), 04021267 (2021). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003848

    Article  Google Scholar 

  5. Karadumpa, C.S.; Pancharathi, R.K.: Developing a novel mix design methodology for slow hardening composite cement concretes through packing density approach. Constr. Build. Mater. 303, 124391 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124391

    Article  Google Scholar 

  6. IS 16415:2015: Indian standard specification for composite cement, Bureau of Indian Standards, New Delhi

  7. Mohammed, A.M.; Asaad, D.S.; Al-Hadithi, A.I.: Experimental and statistical evaluation of rheological properties of self-compacting concrete containing fly ash and ground granulated blast furnace slag. J King Saud Univ. Eng. Sci. (2021). https://doi.org/10.1016/j.jksues.2020.12.005

    Article  Google Scholar 

  8. Shafigh, P.; Nomeli, M.A.; Alengaram, U.J.; Mahmud, H.B.; Jumaat, M.Z.: Engineering properties of lightweight aggregate concrete containing limestone powder and high volume fly ash. J. Clean. Prod. 135, 148–157 (2016). https://doi.org/10.1016/j.jclepro.2016.06.082

    Article  Google Scholar 

  9. Siddique, R.: Performance characteristics of high-volume Class F fly ash concrete. Cem. Concr. Res. 34(3), 487–493 (2004). https://doi.org/10.1016/j.cemconres.2003.09.002

    Article  Google Scholar 

  10. Zhou, X.M.; Slater, J.R.; Wavell, S.E.; Oladiran, O.: Effects of PFA and GGBS on early-ages engineering properties of Portland cement systems. J. Adv. Concr. Technol. 10(2), 74–85 (2012). https://doi.org/10.3151/jact.10.74

    Article  Google Scholar 

  11. Mo, K.H.; Ling, T.C.; Alengaram, U.J.; Yap, S.P.; Yuen, C.W.: Overview of supplementary cementitious materials usage in lightweight aggregate concrete. Constr. Build. Mater. 139, 403–418 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.081

    Article  Google Scholar 

  12. Bilim, C.; Atiş, C.D.; Tanyildizi, H.; Karahan, O.: Predicting the compressive strength of ground granulated blast furnace slag concrete using artificial neural network. Adv. Eng. Softw. 40(5), 334–340 (2009). https://doi.org/10.1016/j.advengsoft.2008.05.005

    Article  MATH  Google Scholar 

  13. Chidiac, S.E.; Panesar, D.K.: Evolution of mechanical properties of concrete containing ground granulated blast furnace slag and effects on the scaling resistance test at 28 days. Cement Concr. Compos. 30(2), 63–71 (2008). https://doi.org/10.1016/j.cemconcomp.2007.09.003

    Article  Google Scholar 

  14. deLarrard, F.; Sedran, T.: Optimization of ultra-high-performance concrete by the use of a packing model. Cem. Concr. Res. 24(6), 997–1009 (1994). https://doi.org/10.1016/0008-8846(94)90022-1

    Article  Google Scholar 

  15. Teichmann, T.; & Schmidt, M.: Influence of the packing density of fine particles on structure, strength and durability of UHPC. In: International symposium on ultra high performance concrete, pp. 313–323. (2004)

  16. Li, L.G.; Lin, C.J.; Chen, G.M.; Kwan, A.K.H.; Jiang, T.: Effects of packing on compressive behaviour of recycled aggregate concrete. Constr. Build. Mater. 157, 757–777 (2017). https://doi.org/10.1016/j.conbuildmat.2017.09.097

    Article  Google Scholar 

  17. Chindaprasirt, P.; Homwuttiwong, S.; Sirivivatnanon, V.: Influence of fly ash fineness on strength, drying shrinkage and sulfate resistance of blended cement mortar. Cem. Concr. Res. 34(7), 1087–1092 (2004). https://doi.org/10.1016/j.cemconres.2003.11.021

    Article  Google Scholar 

  18. Hu, X.; Shi, Z.; Shi, C.; Wu, Z.; Tong, B.; Ou, Z.; De Schutter, G.: Drying shrinkage and cracking resistance of concrete made with ternary cementitious components. Constr. Build. Mater. 149, 406–415 (2017). https://doi.org/10.1016/j.conbuildmat.2017.05.113

    Article  Google Scholar 

  19. Bouzoubaa, N.; Zhang, M.H.; Malhotra, V.M.: Mechanical properties and durability of concrete made with high-volume fly ash blended cements using a coarse fly ash. Cem. Concr. Res. 31(10), 1393–1402 (2001). https://doi.org/10.1016/S0008-8846(01)00592-0

    Article  Google Scholar 

  20. Crouch, L. K.; Hewitt, R.; & Byard, B.: High volume fly ash concrete. World of Coal Ash (WOCA), pp. 1–14 (2007).

  21. Kayali, O.; Ahmed, M.S.: Assessment of high volume replacement fly ash concrete–Concept of performance index. Constr. Build. Mater. 39, 71–76 (2013). https://doi.org/10.1016/j.conbuildmat.2012.05.009

    Article  Google Scholar 

  22. Atiş, C.D.; Bilim, C.: Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag. Build. Environ. 42(8), 3060–3065 (2007). https://doi.org/10.1016/j.buildenv.2006.07.027

    Article  Google Scholar 

  23. Cheah, C.B.; Tiong, L.L.; Ng, E.P.; Oo, C.W.: The engineering performance of concrete containing high volume of ground granulated blast furnace slag and pulverized fly ash with polycarboxylate-based superplasticizer. Constr. Build. Mater. 202, 909–921 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.075

    Article  Google Scholar 

  24. Mehta, P. K.; & Monteiro, P. J.: Concrete microstructure, properties and materials, 3rd edn, McGraw-Hill publishers. https://doi.org/10.1036/0071462899 (2006)

  25. De Rojas, M.S.; Frías, M.: The pozzolanic activity of different materials, its influence on the hydration heat in mortars. Cem. Concr. Res. 26(2), 203–213 (1996). https://doi.org/10.1016/0008-8846(95)00200-6

    Article  Google Scholar 

  26. Mostafa, N.Y.; Brown, P.W.: Heat of hydration of high reactive pozzolans in blended cements: isothermal conduction calorimetry. Thermochimicaacta 435(2), 162–167 (2005). https://doi.org/10.1016/j.tca.2005.05.014

    Article  Google Scholar 

  27. Hendriks, C. A.; Worrell, E.; De Jager, D.; Blok, K.; & Riemer, P.: Emission reduction of greenhouse gases from the cement industry. In: Proceedings of the fourth international conference on greenhouse gas control technologies, pp. 939–944. Interlaken, Austria, IEA GHG R&D Programme. (1998)

  28. Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O.: Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy Env. 26(1), 303–329 (2001). https://doi.org/10.1146/annurev.energy.26.1.303

    Article  Google Scholar 

  29. Detwiler, R. J.; Bhatty, J. I.; & Battacharja, S.: Supplementary cementing materials for use in blended cements (No. R&D Bulletin RD112T). (1996)

  30. Rehan, R.; Nehdi, M.: Carbon dioxide emissions and climate change: policy implications for the cement industry. Environ. Sci. Policy 8(2), 105–114 (2005). https://doi.org/10.1016/j.envsci.2004.12.006

    Article  Google Scholar 

  31. García-Segura, T.; Yepes, V.; Alcalá, J.: Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. Int. J. Life Cycle Assess. 19(1), 3–12 (2014). https://doi.org/10.1007/s11367-013-0614-0

    Article  Google Scholar 

  32. Güneyisi, E.; Özturan, T.; Gesogˇlu, M.: Effect of initial curing on chloride ingress and corrosion resistance characteristics of concretes made with plain and blended cements. Build. Environ. 42(7), 2676–2685 (2007). https://doi.org/10.1016/j.buildenv.2006.07.008

    Article  Google Scholar 

  33. Ogirigbo, O.R.; Black, L.: The effect of slag composition and curing duration on the chloride ingress resistance of slag-blended cements. Adv. Cem. Res. 31(5), 243–250 (2019). https://doi.org/10.1680/jadcr.17.00152

    Article  Google Scholar 

  34. Papadakis, V.G.: Effect of supplementary cementing materials on concrete resistance against carbonation and chloride ingress. Cem. Concr. Res. 30(2), 291–299 (2000). https://doi.org/10.1016/S0008-8846(99)00249-5

    Article  Google Scholar 

  35. Jones, M.R.; Dhir, R.K.; Magee, B.J.: Concrete containing ternary blended binders: resistance to chloride ingress and carbonation. Cem. Concr. Res. 27(6), 825–831 (1997). https://doi.org/10.1016/S0008-8846(97)00075-6

    Article  Google Scholar 

  36. Xuequan, W.; Hong, Z.; Xinkai, H.; Husen, L.: Study on steel slag and fly ash composite portland cement. Cem. Concr. Res. 29(7), 1103–1106 (1999). https://doi.org/10.1016/S0008-8846(98)00244-0

    Article  Google Scholar 

  37. Bakharev, T.; Sanjayan, J.G.; Cheng, Y.B.: Resistance of alkali-activated slag concrete to alkali–aggregate reaction. Cem. Concr. Res. 31(2), 331–334 (2001). https://doi.org/10.1016/S0008-8846(00)00483-X

    Article  Google Scholar 

  38. Angulo-Ramírez, D.E.; de Gutiérrez, R.M.; Medeiros, M.: Alkali-activated portland blast furnace slag cement mortars: performance to alkali-aggregate reaction. Constr. Build. Mater. 179, 49–56 (2018). https://doi.org/10.1016/j.conbuildmat.2018.05.183

    Article  Google Scholar 

  39. Dong-Xu, L.; Lin, C.; Zhong-Zi, X.; Zhi-Min, L.: A blended cement containing blast furnace slag and phosphorous slag. J. Wuhan Univ. Technol. Mater. Sci. Ed. 17(2), 62–65 (2002). https://doi.org/10.1007/BF02832625

    Article  Google Scholar 

  40. Ghrici, M.; Kenai, S.; Said-Mansour, M.: Mechanical properties and durability of mortar and concrete containing natural pozzolana and limestone blended cements. Cement Concr. Compos. 29(7), 542–549 (2007). https://doi.org/10.1016/j.cemconcomp.2007.04.009

    Article  Google Scholar 

  41. Menéndez, G.V.B.B.; Bonavetti, V.; Irassar, E.F.: Strength development of ternary blended cement with limestone filler and blast-furnace slag. Cement Concr. Compos. 25(1), 61–67 (2003). https://doi.org/10.1016/S0958-9465(01)00056-7

    Article  Google Scholar 

  42. Bapat, J.D.: Performance of cement concrete with mineral admixtures. Adv. Cem. Res. 13(4), 139–155 (2001). https://doi.org/10.1680/adcr.2001.13.4.139

    Article  Google Scholar 

  43. Fuller, W.B.; Thompson, S.E.: The laws of proportioning concrete. Trans. Am. Soc. Civ. Eng. 59(2), 67–143 (1907)

    Article  Google Scholar 

  44. Johansen, V.; Andersen, P.J.: Particle packing and concrete properties: materials science of concrete-II, p. 111–147. The American Ceramic Society, Inc, Westerville, Ohio (1992)

    Google Scholar 

  45. Dinger, D.R.; Funk, J.E.: Particle-packing phenomena and their application in materials processing. MRS Bull. 22(12), 19–23 (1997)

    Article  Google Scholar 

  46. Furnas, C.C.: Grading aggregates-I.-Mathematical relations for beds of broken solids of maximum density. Ind. Eng. Chem. 23(9), 1052–1058 (1931)

    Article  Google Scholar 

  47. Aim, R.B.; Le Goff, P.: La coordinance des empilementsdésordonnés de spheres. application aux mélanges binaires de spheres. Powder Technol. 2(1), 1–12 (1968)

    Article  Google Scholar 

  48. Toufar, W.; Born, M.; Klose, E.: Contribution of optimisation of components of different density in polydispersed particles systems. Freib. Bookl. A 558, 29–44 (1976)

    Google Scholar 

  49. Goltermann, P.; Johansen, V.; Palbøl, L.: Packing of aggregates: An alternative tool to determine the optimal aggregate mix. ACI Mater. J. 94, 435–443 (1997). https://doi.org/10.14359/328

    Article  Google Scholar 

  50. Dewar, J.D.; Goes, M.F.: Sinhoreti, M.A.: Consani, S.; Silva, M.A.: Mixtures computer modelling of concrete mixtures. https://doi.org/10.1088/1742-6596/755/1/011001(1998)

  51. De Larrard, F.: Concrete mixture proportioning: a scientific approach. CRC Press (1999)

    Book  Google Scholar 

  52. de Grazia, M.T.; Sanchez, L.F.; Romano, R.C.; Pileggi, R.G.: Investigation of the use of continuous particle packing models (PPMs) on the fresh and hardened properties of low-cement concrete (LCC) systems. Constr. Build. Mater. 195, 524–536 (2019). https://doi.org/10.1016/j.conbuildmat.2018.11.051

    Article  Google Scholar 

  53. Kwan, A.K.H.; Wong, V.; Fung, W.W.S.: A 3-parameter packing density model for angular rock aggregate particles. Powder Technol. 274, 154–162 (2015). https://doi.org/10.1016/j.powtec.2014.12.054

    Article  Google Scholar 

  54. Yu, A.B.; Zou, R.P.; Standish, N.: Modifying the linear packing model for predicting the porosity of nonspherical particle mixtures. Ind. Eng. Chem. Res. 35(10), 3730–3741 (1996). https://doi.org/10.1021/ie950616a

    Article  Google Scholar 

  55. Ji, T.; Xu, Y.H.; Luo, S.R.; Lin, X.J.: Optimum design of concrete m ix proportion based on least paste theory. Concrete 8, 12–14 (2009)

    Google Scholar 

  56. Esmaeilkhanian, B.; Khayat, K.H.; Wallevik, O.H.: Mix design approach for low-powder self-consolidating concrete: eco-SCC—content optimization and performance. Mater. Struct. 50(2), 1–18 (2017). https://doi.org/10.1617/s11527-017-0993-y

    Article  Google Scholar 

  57. Kwan, A.K.H.; Mora, C.F.: Effects of various shape parameters on packing of aggregate particles. Mag. Concr. Res. 53(2), 91–100 (2001). https://doi.org/10.1680/macr.2001.53.2.91

    Article  Google Scholar 

  58. Yammine, J.; Chaouche, M.; Guerinet, M.; Moranville, M.; Roussel, N.: From ordinary rhelogy concrete to self compacting concrete: a transition between frictional and hydrodynamic interactions. Cem. Concr. Res. 38(7), 890–896 (2008). https://doi.org/10.1016/j.cemconres.2008.03.011

    Article  Google Scholar 

  59. IS 10262:2019: Indian standard specification for concrete mix proportioning guidelines, second revision, Bureau of Indian Standards, New Delhi

  60. ACI 211.1-91: Standard practice for selecting proportions for normal, heavyweight, and mass concrete. Reported by ACI Committee 211. (Reapproved 2002)

  61. BS 8500:2015 (Part 2), BS EN 206, Specification for constituent materials and concrete. British Standard, London, United Kingdom

  62. Prakasan, S.; Palaniappan, S.; Gettu, R.: Study of energy use and CO2 emissions in the manufacturing of clinker and cement. J. Inst. Eng. (India) Ser. A 101(1), 221–232 (2020). https://doi.org/10.1007/s40030-019-00409-4

    Article  Google Scholar 

  63. Reddy, B.V.; Jagadish, K.S.: Embodied energy of common and alternative building materials and technologies. Energy Build. 35(2), 129–137 (2003). https://doi.org/10.1016/S0378-7788(01)00141-4

    Article  Google Scholar 

  64. Collins, F.: Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. Int. J. Life Cycle Assess. 15(6), 549–556 (2010). https://doi.org/10.1007/s11367-010-0191-4

    Article  Google Scholar 

  65. Flower, D.J.; Sanjayan, J.G.: Green house gas emissions due to concrete manufacture. Int. J. Life Cycle Assess. 12(5), 282–288 (2007). https://doi.org/10.1065/lca2007.05.327

    Article  Google Scholar 

  66. Aysha, H.; Hemalatha, T.; Arunachalam, N.; Ramachandra Murthy, A.; Nagesh, R.I.: Assessment of embodied energy in the production of ultra high performance concrete (UHPC). Int. J. Stud. Res. Technol. Manag. 2(03), 113–120 (2014)

    Google Scholar 

  67. Dixit, M.K.; Fernández-Solís, J.L.; Lavy, S.; Culp, C.H.: Identification of parameters for embodied energy measurement: A literature review. Energy Build. 42(8), 1238–1247 (2010). https://doi.org/10.1016/j.enbuild.2010.02.016

    Article  Google Scholar 

  68. IS 269:2015, Indian standard specification for ordinary portland cement, Bureau of Indian Standards, New Delhi

  69. British Standard Institution, BS EN 197-1: Cement–composition, specifications and conformity criteria for common cements. London. (2011)

  70. IS 383:2016, Indian standard specification for coarse and fine aggregates for concrete, Bureau of Indian Standards, New Delhi

  71. American Society for Testing and Materials: Standard specification for concrete aggregates, ASTM C33/C33M-18. Book of Standards Volume: 04.02: Developed by Subcommittee: C09.20. (2018)

  72. IS 3812 (part 1):2013, Indian standard specification for pulverized fuel ash, Bureau of Indian Standards, New Delhi

  73. American Society for Testing and Materials: Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete ASTM C618-19. West Conshohocken. (2019)

  74. IS 12089:1987, Indian standard specification for granulated slag for the manufacture of portland slag cement, Bureau of Indian Standards, New Delhi

  75. IS 9103:1999, Standard concrete admixtures-specification, Bureau of Indian Standards, New Delhi

  76. American Society for Testing and Materials: Standard specification for chemical admixtures for concrete, ASTM C 494M-17. (2019)

  77. IS 516:2004, Indian Standard methods of tests for strength of concrete, Bureau of Indian Standards, New Delhi

  78. Kumar, S.E.N.T.H.I.L.; Santhanam, M.: Particle packing theories and their application in concrete mixture proportioning: A review. Indian Concr. J. 77(9), 1324–1331 (2003)

    Google Scholar 

  79. Damineli, B.L.; Kemeid, F.M.; Aguiar, P.S.; John, V.M.: Measuring the eco-efficiency of cement use. Cement Concr. Compos. 32(8), 555–562 (2010). https://doi.org/10.1016/j.cemconcomp.2010.07.009

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted for the partial fulfillment of PhD research work under Ministry of Human Resource Development (MHRD) fellowship at National Institute of Technology Warangal, India.

Author information

Authors and Affiliations

Authors

Contributions

CSK was involved in conceptualization, methodology, investigation, writing the original draft and supervision. RKP was responsible for validation, formal analysis, visualization and writing—reviewing and editing.

Corresponding author

Correspondence to Chandra Sekhar Karadumpa.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karadumpa, C.S., Pancharathi, R.K. Developing Low-Carbon Composite Cement Concretes (LC4) Using Continuous Particle Packing Approach. Arab J Sci Eng 48, 12805–12823 (2023). https://doi.org/10.1007/s13369-022-07584-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07584-w

Keywords

Navigation