Skip to main content
Log in

Novel Fe0 Embedded Alginate Beads and Coated with CuO-Fe3O4 as a Sustainable Catalyst for Photo-Fenton Degradation of Oxytetracycline in Wastewater

  • Research Article-chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A novel catalyst made of zero-valent iron (Fe0) well dispersed and immobilized on alginate beads and coated using CuO-Fe3O4 (CuO-Fe3O4-Fe0/Abs) was designed and fabricated as a sustainable catalyst to degrade oxytetracycline using a heterogeneous photo-Fenton process. The CuO-Fe3O4 component was incorporated as a thin layer to cover the beads during the cross-linking reaction to allow immobilization of Fe0 inside the bead structure. Characterization analyses such as Fourier transform infrared spectroscopy, scanning electron microscopy with energy-dispersive spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of Fe0 on the thin layer of CuO-Fe3O4 on the beads. The performance test of the catalysts showed that they effectively removed OTC from water through the Fenton and photo-Fenton process at a wide range of pH values (pH 3–8) under visible irradiation. The optimum conditions to completely degrade 20 mg/L antibiotics were achieved at pH 3.0 in the presence of 200 mg/L (CuO-Fe3O4-Fe0/Abs) catalyst within 60 min of reaction time because of the synergic effect associated with Fe0 Fenton reaction in the presence of CuO-Fe3O4. These results proved the high performance of the catalyst for the OTC degradation in wastewater satisfactorily fits the pseudo-first-order kinetic model. The k value increases from 0.0476 for Cycle 1 to 0.0831 min−1 for Cycle 4 to indicate that chemical reaction indeed played the predominant role in the OTC degradation. It also had high stability with the controlled release of Fe0 into the solution to enhance its catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fouad, K.; Bassyouni, M.; Alalm, M.G.; Saleh, M.Y.: Recent developments in recalcitrant organic pollutants degradation using immobilized photocatalysts. Appl. Phys. A 127(8), 1–28 (2021). https://doi.org/10.1007/s00339-021-04724-1

    Article  Google Scholar 

  2. King, S.T.; Sylvander, M.; Kheperu, M.; Racz, L.; Harper, W.F., Jr.: Detecting recalcitrant organic chemicals in water with microbial fuel cells and artificial neural networks. Sci. Total Environ. 497, 527–533 (2014). https://doi.org/10.1016/j.scitotenv.2014.07.108

    Article  Google Scholar 

  3. O’Connor, D.; Hou, D.; Ok, Y.S.; Song, Y.; Sarmah, A.K.; Li, X.; Tack, F.M.: Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: a review. J. Control. Release 283, 200–213 (2018). https://doi.org/10.1016/j.jconrel.2018.06.007

    Article  Google Scholar 

  4. Klein, E.Y.; van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R.: Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Nat. Acad. Sci. 115(15), E3463–E3470 (2018). https://doi.org/10.1073/pnas.171729511

    Article  Google Scholar 

  5. Hassouna, M.; Amin, R.R.; Ahmed-Anwar, A.A.; Mahmoud, R.K.: Efficient removal of oxytetracycline and some heavy metals from aqueous solutions by Mg-Al layered double hydroxide nanomaterial. Egypt. J. Chem. 62, 177–195 (2019). https://doi.org/10.21608/EJCHEM.2019.6102.1510

    Article  Google Scholar 

  6. Leal, J.; Esteves, V.; Santos, E.: Use of sunlight to degrade oxytetracycline in marine aquaculture’s waters. Environ. Pollut. 213, 932–939 (2016). https://doi.org/10.1016/j.envpol.2016.03.040

    Article  Google Scholar 

  7. Ferreira, L.; Salmerón, I.; Peres, J.; Tavares, P.; Lucas, M.; Malato, S.: Advanced oxidation processes as sustainable technologies for the reduction of elderberry agro-industrial water impact. Water Resour. Ind. 24, 100137 (2020). https://doi.org/10.1016/j.wri.2020.100137

    Article  Google Scholar 

  8. Hitam, C.; Jalil, A.: A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants. J. Environ. Manage 258, 110050 (2020). https://doi.org/10.1016/j.jenvman.2019.110050

    Article  Google Scholar 

  9. Le, T.T.; Murugesan, K.; Lee, C.-S.; Vu, C.H.; Chang, Y.-S.; Jeon, J.-R.: Degradation of synthetic pollutants in real wastewater using laccase encapsulated in core–shell magnetic copper alginate beads. Bioresour. Technol. 216, 203–210 (2016). https://doi.org/10.1016/j.biortech.2016.05.077

    Article  Google Scholar 

  10. Hassandoost, R.; Pouran, S.R.; Khataee, A.; Orooji, Y.; Joo, S.W.: Hierarchically structured ternary heterojunctions based on Ce3+/Ce4+ modified Fe3O4 nanoparticles anchored onto graphene oxide sheets as magnetic visible-light-active photocatalysts for decontamination of oxytetracycline. J. Hazard. Mater. 376, 200–211 (2019). https://doi.org/10.1016/j.jhazmat.2019.05.035

    Article  Google Scholar 

  11. Liu, M.; Yu, S.; Hou, L.-A.; Hu, X.: Removal of oxytetracycline by Fe2O3–TiO2/modified zeolite composites under visible light irradiation. J. Mater. Sci. Mater. Electron. 30(10), 9087–9096 (2019). https://doi.org/10.1007/s10854-019-01052-2

    Article  Google Scholar 

  12. Lei, Y.; Chen, C.-S.; Tu, Y.-J.; Huang, Y.-H.; Zhang, H.: Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: mechanism, stability, and effects of pH and bicarbonate ions. Environ. Sci. Technol. 49(11), 6838–6845 (2015). https://doi.org/10.1021/acs.est.5b00623

    Article  Google Scholar 

  13. Dong, Y.; Dong, W.; Cao, Y.; Han, Z.; Ding, Z.: Preparation and catalytic activity of Fe alginate gel beads for oxidative degradation of azo dyes under visible light irradiation. Catal. Today 175(1), 346–355 (2011). https://doi.org/10.1016/j.cattod.2011.03.035

    Article  Google Scholar 

  14. Kim, H.; Hong, H.-J.; Jung, J.; Kim, S.-H.; Yang, J.-W.: Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J. Hazard. Mater. 176(1–3), 1038–1043 (2010). https://doi.org/10.1016/j.jhazmat.2009.11.145

    Article  Google Scholar 

  15. Kang, Y.-G.; Vu, H.C.; Le, T.T.; Chang, Y.-S.: Activation of persulfate by a novel Fe (II)-immobilized chitosan/alginate composite for bisphenol a degradation. Chem. Eng. J. 353, 736–745 (2018). https://doi.org/10.1016/j.cej.2018.07.175

    Article  Google Scholar 

  16. Bilal, M.; Iqbal, H.M.: Lignin peroxidase immobilization on Ca-alginate beads and its dye degradation performance in a packed bed reactor system. Biocatal. Agric. Biotechnol. 20, 101205 (2019). https://doi.org/10.1016/j.bcab.2019.101205

    Article  Google Scholar 

  17. Lee, C.-S.; Gong, J.; Huong, C.V.; Oh, D.-S.; Chang, Y.-S.: Macroporous alginate substrate-bound growth of Fe0 nanoparticles with high redox activities for nitrate removal from aqueous solutions. Chem. Eng. J. 298, 206–213 (2016). https://doi.org/10.1016/j.cej.2016.03.113

    Article  Google Scholar 

  18. Bilal, M.; Rasheed, T.; Iqbal, H.M.; Hu, H.; Wang, W.; Zhang, X.: Novel characteristics of horseradish peroxidase immobilized onto the polyvinyl alcohol-alginate beads and its methyl orange degradation potential. Int. J. Biol. Macromol. 105, 328–335 (2017). https://doi.org/10.1016/j.ijbiomac.2017.07.042

    Article  Google Scholar 

  19. Pullin, H.; Springell, R.; Parry, S.; Scott, T.: The effect of aqueous corrosion on the structure and reactivity of zero-valent iron nanoparticles. Chem. Eng. J. 308, 568–577 (2017). https://doi.org/10.1016/j.cej.2016.09.088

    Article  Google Scholar 

  20. Hwang, Y.-H.; Kim, D.-G.; Shin, H.-S.: Effects of synthesis conditions on the characteristics and reactivity of nano scale zero valent iron. Appl. Catal. B Environ. 105(1–2), 144–150 (2011). https://doi.org/10.1016/j.apcatb.2011.04.005

    Article  Google Scholar 

  21. Ba-Abbad, M.M.; Kadhum, A.A.H.; Mohamad, A.B.; Takriff, M.S.; Sopian, K.: Synthesis and catalytic activity of TiO2 nanoparticles for photochemical oxidation of concentrated chlorophenols under direct solar radiation. Int. J. Electrochem. Sci 7(6), 4871–4888 (2012)

    Google Scholar 

  22. Jiang, Y.; Ran, J.; Mao, K.; Yang, X.; Zhong, L.; Yang, C.; Feng, X.; Zhang, H.: Recent progress in Fenton/Fenton-like reactions for the removal of antibiotics in aqueous environments. Ecotoxicol. Environ. Saf. 236, 113464 (2022). https://doi.org/10.1016/j.ecoenv.2022.113464

    Article  Google Scholar 

  23. Li, Z.; Wang, M.; Jin, C.; Kang, J.; Liu, J.; Yang, H.; Zhang, Y.; Pu, Q.; Zhao, Y.; You, M.; Wu, Z.: Synthesis of novel Co3O4 hierarchical porous nanosheets via corn stem and MOF-Co templates for efficient oxytetracycline degradation by peroxymonosulfate activation. Chem. Eng. J. 392, 123789 (2020). https://doi.org/10.1016/j.cej.2019.123789

    Article  Google Scholar 

  24. Zhao, N.; Liu, K.; He, C.; Gao, J.; Zhang, W.; Zhao, T.; Tsang, D.C.W.; Qiu, R.: Singlet oxygen mediated the selective removal of oxytetracycline in C/Fe3C/Fe0 system as compared to chloramphenicol. Environ. Int. 143, 105899 (2020). https://doi.org/10.1016/j.envint.2020.105899

    Article  Google Scholar 

  25. Wang, Q.; Ma, Y.; Xing, S.: Comparative study of Cu-based bimetallic oxides for Fenton-like degradation of organic pollutants. Chemosphere 203, 450–456 (2018). https://doi.org/10.1016/j.chemosphere.2018.04.013

    Article  Google Scholar 

  26. Wu, Z.; Gu, Y.; Xin, S.; Lu, L.; Huang, Z.; Li, M.; Cui, Y.; Fu, R.; Wang, S.: CuxNiyCo-LDH nanosheets on graphene oxide: An efficient and stable Fenton-like catalyst for dual-mechanism degradation of tetracycline. Chem. Eng. J. 434, 134574 (2022). https://doi.org/10.1016/j.cej.2022.134574

    Article  Google Scholar 

  27. Pham, V.L.; Kim, D.-G.; Ko, S.-O.: Cu@Fe3O4 core-shell nanoparticle-catalyzed oxidative degradation of the antibiotic oxytetracycline in pre-treated landfill leachate. Chemosphere 191, 639–650 (2018). https://doi.org/10.1016/j.chemosphere.2017.10.090

    Article  Google Scholar 

  28. Pereira, J.H.; Queirós, D.B.; Reis, A.C.; Nunes, O.C.; Borges, M.T.; Boaventura, R.A.; Vilar, V.J.: Process enhancement at near neutral pH of a homogeneous photo-Fenton reaction using ferricarboxylate complexes: application to oxytetracycline degradation. Chem. Eng. J. 253, 217–228 (2014). https://doi.org/10.1016/j.cej.2014.05.037

    Article  Google Scholar 

  29. Masschelein, C.A.; Ryder, D.S.; Simon, J.-P.: Immobilized cell technology in beer production. Crit. Rev. Biotechnol. 14(2), 155–177 (1994). https://doi.org/10.3109/07388559409086966

    Article  Google Scholar 

  30. Kessler, A.; Hedberg, J.; Blomberg, E.; Odnevall, I.: Reactive oxygen species formed by metal and metal oxide nanoparticles in physiological media—a review of reactions of importance to nanotoxicity and proposal for categorization. Nanomaterials 12(11), 1922 (2022). https://doi.org/10.3390/nano12111922

    Article  Google Scholar 

  31. Hu, X.; Li, C.; Song, J.; Zheng, S.; Sun, Z.: Multidimensional assembly of oxygen vacancy-rich amorphous TiO2-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light. J. Colloid Interface Sci. 574, 61–73 (2020). https://doi.org/10.1016/j.jcis.2020.04.035

    Article  Google Scholar 

  32. Li, N.; Zhou, L.; Jin, X.; Owens, G.; Chen, Z.: Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. J. Hazard. Mater. 366, 563–572 (2019). https://doi.org/10.1016/j.jhazmat.2018.12.047

    Article  Google Scholar 

  33. Priya, B.; Raizada, P.; Singh, N.; Thakur, P.; Singh, P.: Adsorptional photocatalytic mineralization of oxytetracycline and ampicillin antibiotics using Bi2O3/BiOCl supported on graphene sand composite and chitosan. J. Colloid Interface Sci. 479, 271–283 (2016). https://doi.org/10.1016/j.jcis.2016.06.067

    Article  Google Scholar 

  34. Raizada, P.; Kumari, J.; Shandilya, P.; Singh, P.: Kinetics of photocatalytic mineralization of oxytetracycline and ampicillin using activated carbon supported ZnO/ZnWO. Desalination 79, 204–213 (2017). https://doi.org/10.5004/dwt.2017.20831

    Article  Google Scholar 

  35. Raizada, P.; Kumari, J.; Shandilya, P.; Dhiman, R.; Singh, V.P.; Singh, P.: Magnetically retrievable Bi2WO6/Fe3O4 immobilized on graphene sand composite for investigation of photocatalytic mineralization of oxytetracycline and ampicillin. Process Saf. Environ. Prot. 106, 104–116 (2017). https://doi.org/10.1016/j.psep.2016.12.012

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Long-term Research Grant Scheme (LRGS/1/2018/USM/01/1/3) provided by the Ministry of Higher Education of Malaysia.

Funding

The authors gratefully acknowledge the financial support received from the Ministry of Higher Education (MoHE) of Malaysia (LRGS Grant, Project number LRGS/1/2018/USM/01/1/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Zuhairi Abdullah.

Ethics declarations

Conflict of interest

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alrebaki, M.A., Ba-Abbad, M.M. & Abdullah, A.Z. Novel Fe0 Embedded Alginate Beads and Coated with CuO-Fe3O4 as a Sustainable Catalyst for Photo-Fenton Degradation of Oxytetracycline in Wastewater. Arab J Sci Eng 48, 8957–8969 (2023). https://doi.org/10.1007/s13369-022-07577-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07577-9

Keywords

Navigation