Skip to main content
Log in

An Improved DDCCTA Toward its Application in Different Wave-Function and PWM Generation

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Differential difference current conveyor transconductance amplifier (DDCCTA) is an important building block for current mode circuits. However, the existing DDCCTA circuit suffers from a current error, low tolerance to bias voltage deviation, and requirement of additional circuit for bias current. Hence, a new DDCCTA circuit alleviating these shortfalls is proposed using only two variants of MOS parameters. The proposed DDCCTA operates over a bandwidth of 500 MHz. It delivers more than 117% larger linear operational range and offers larger performance stability than the existing DDCCTA circuit. Further, it has been used to generate sinusoidal, square, and triangular waveforms. However, investigation shows that it is quite challenging to generate all these waves along with a PWM using a single DDCCTA block. Therefore, a new block termed as DDCC-X-TA-X is proposed to generate all the said waves and a PWM simultaneously from a single active block and using only a few passive components. Practical emulation of the circuit, using AD844 and CA3080, also confirms its operation. Pre- and post-layout simulations of this new block have also been done. Monte Carlo simulation and PVT analyses depict that the circuit operation is quite stable to the fabrication imperfection originated mismatches in transistor parameters and temperature variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Smith, K.C.: The story behind microelectronic circuits. IEEE Solid-State Circuit Mag. 1(4), 8–17 (2009)

    Article  Google Scholar 

  2. Toumazou, C.; Lidgey, F.J.; Haigh, D.: Analogue IC Design: The Current-mode Approach, vol. 2. Presbyterian Publishing Corp, Louisville (1990)

    Google Scholar 

  3. Wilson, B.: Tutorial review trends in current conveyor and current-mode amplifier design. Int. J. Electron. 73(3), 573–583 (1992)

    Article  MathSciNet  Google Scholar 

  4. Avireni, S.; Sowjanya, G.; Gautham, S.; Telagathoti, P.; Krishna, V.: In: Proceedings of the International Conference on Nano-electronics, Circuits & Communication Systems, pp. 343–352. Springer, New York (2017)

  5. Jantakun, A.: A simple grounded fdnr and capacitance simulator based-on ccta. AEU-Int. J. Electron. Commun. 69(6), 950–957 (2015)

    Article  Google Scholar 

  6. Haque, A.S.; Hossain, M.M.; Davis, W.A.; Russell, H.T.; Carter, R.L.: In: 2008 IEEE Region 5 Conference, pp. 1–5. IEEE (2008)

  7. Almashary, B.; Alhokail, H.: Current-mode triangular wave generator using cciis. Microelectron. J. 31(4), 239–243 (2000)

    Article  Google Scholar 

  8. Mohammad, U.; Yasin, M.Y.; Yousuf, R.; Anwar, I.: A novel square wave generator based on the translinear circuit scheme of second generation current controlled current conveyor-cccii. SN Appl. Sci. 1(6), 1–14 (2019)

    Article  Google Scholar 

  9. Chaturvedi, B.; Kumar, A.: A novel linear square/triangular wave generator with tunable duty cycle. AEU-Int. J. Electron. Commun. 84, 206–209 (2018)

    Article  Google Scholar 

  10. Minaei, S.; Yuce, E.: A simple schmitt trigger circuit with grounded passive elements and its application to square/triangular wave generator. Circuits Syst. Signal Process. 31(3), 877–888 (2012)

    Article  Google Scholar 

  11. Chien, H.C.: Voltage-controlled dual slope operation square/triangular wave generator and its application as a dual mode operation pulse width modulator employing differential voltage current conveyors. Microelectron. J. 43(12), 962–974 (2012)

    Article  Google Scholar 

  12. Lo, Y.K.; Chien, H.C.; Chiu, H.J.: Tunable waveform generators using single dual-current output otas. J. Circ. Syst. Comput. 17(06), 1193–1202 (2008)

    Article  Google Scholar 

  13. Lo, Y.K.; Chien, H.C.: Switch-controllable otra-based square/triangular waveform generator. IEEE Trans. Circuits Syst. II Express Briefs 54(12), 1110–1114 (2007)

    Google Scholar 

  14. Ranjan, R.K.; Mazumdar, K.; Pal, R.; Chandra, S.: Generation of square and triangular wave with independently controllable frequency and amplitude using otas only and its application in pwm. Analog Integr. Circuit Signal Process 92(1), 15–27 (2017)

    Article  Google Scholar 

  15. Verma, V.K.; Ranjan, R.K.: Design of active pwm control driver circuit for torquer system using ccii. IEEE Access 9, 75426–75434 (2021)

    Article  Google Scholar 

  16. Pandey, N.; Paul, S.K.: Differential difference current conveyor transconductance amplifier: a new analog building block for signal processing. J. Electr. Comput. Eng. 2011 (2011)

  17. Ahmer, M.; Kidwai, N.; Yasin, M.Y.: A novel memristor emulator design and universal biquad filter application using second generation high swing differential current conveyor transconductance amplifier in 130 nm cmos process. Mater. Today Proc. 51, 150–155 (2022)

    Article  Google Scholar 

  18. Chiu, W.; Liu, S.I.; Tsao, H.W.; Chen, J.J.: Cmos differential difference current conveyors and their applications. IEE Proc.-Circuits Devices Syst. 143(2), 91–96 (1996)

    Article  MATH  Google Scholar 

  19. Hu, J.; Xia, Y.; Xu, T.; Dong, H.: In: 2004 International Conference on Communications, Circuits and Systems (IEEE Cat. No. 04EX914), vol. 2, pp. 1156–1160. IEEE (2004)

  20. Taskiran, Z.G.C.; Ayten, U.E.; Sedef, H.: Dual-output operational transconductance amplifier-based electronically controllable memristance simulator circuit. Circuits Syst. Signal Process. 38(1), 26–40 (2019)

  21. Ispas, A.; Bund, A.: Electrochemical quartz crystal microbalance. Encycl. Appl. Electrochem. 554–568 (2014)

  22. Vittoz, E.: Low-Power Crystal and MEMS Oscillators, pp. 41–92. Springer, New York (2010)

    Book  Google Scholar 

  23. Petrović, P.B.: New cmos current-mode analogue to digital power converter. Circuits Syst. Signal Process. 36(4), 1361–1378 (2017)

    Article  Google Scholar 

  24. Lahiri, A.: Explicit-current-output quadrature oscillator using second-generation current conveyor transconductance amplifier. Radioengineering 18(4), 522–526 (2009)

    Google Scholar 

  25. Sotner, R.; Jerabek, J.; Prokop, R.; Vrba, K.: Current gain controlled ccta and its application in quadrature oscillator and direct frequency modulator. Radioengineering 20(1), 317–326 (2011)

    Google Scholar 

  26. Summart, S.; Saetiaw, C.; Thongsopa, C.; Jaikla, W.: Ccta based current-mode first order filter and its application in quadrature oscillator. Przeglad Elektrotechniczny 89(6), 104–108 (2013)

    Google Scholar 

  27. Harada, T.; Kojima, F.: In: 2018 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 382–385. IEEE (2018)

  28. Siripruchyanun, M.; Wardkein, P.; Sangpisit, W.: In: 2000 TENCON Proceedings. Intelligent Systems and Technologies for the New Millennium (Cat. No. 00CH37119), vol. 1, pp. 452–457. IEEE (2000)

  29. Silapan, P.; Siripruchyanun, M.: In: The 1st International Conference on Technical Education, pp. 144–148. Citeseer (2010)

  30. Pandey, R.; Pandey, N.; Paul, S.K.: Voltage mode pulse width modulator using single operational transresistance amplifier. J. Eng. 2013 (2013)

  31. Ranjan, R.K.; Sinha, A.; Paul, S.K.: A new operational transconductance amplifier based pulse width modulator. Proc. Natl. Acad. Sci. India Sect. A 89(1), 51–55 (2019)

    Article  MathSciNet  Google Scholar 

  32. Silapan, P.; Siripruchyanun, M.: Fully and electronically controllable current-mode schmitt triggers employing only single mo-cccdta and their applications. Analog Integr. Circuit Signal Process 68(1), 111–128 (2011)

    Article  Google Scholar 

  33. Folder, O.P.; Folder, T.P.; Folder, R.P.: Analog pulse width modulation (2013)

  34. Kim, H.; Kim, H.J.; Chung, W.S.: Pulsewidth modulation circuits using cmos otas. IEEE Trans. Circuits Syst. I Regul. Pap. 54(9), 1869–1878 (2007)

    Article  Google Scholar 

  35. Chien, H.C.: A current-/voltage-controlled four-slope operation square-/triangular-wave generator and a dual-mode pulse width modulation signal generator employing current-feedback operational amplifiers. Microelectron. J. 45(6), 634–647 (2014)

    Article  Google Scholar 

  36. Ranjan, R.K.; Paul, S.K.: Self generating square/triangular wave and pulse width modulator using a single mo-cccdta. Analog Integr. Circuits Signal Process 94(1), 177–193 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar Ranjan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, S., Kumar, P., Ranjan, R.K. et al. An Improved DDCCTA Toward its Application in Different Wave-Function and PWM Generation. Arab J Sci Eng 48, 14313–14332 (2023). https://doi.org/10.1007/s13369-022-07559-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07559-x

Keywords

Navigation