Skip to main content
Log in

Evaluation of the Mechanical and Durability Properties of Geopolymer Concrete Prepared with C-Glass Fibers

  • Research Article-civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Abundant research on geopolymer concrete in the last two decades has provided worldwide acceptability in conventional structural applications. The high-impact applications of geopolymers are mostly limited because they are quasi-brittle in nature and show moderate crack resistance; hence, they require suitable reinforcing materials such as fibers. This paper reports a study to assess the strength and durability properties of fly ash-based geopolymer concrete (FA-GPC) prepared with novel C-glass fibers. The binder mix was comprised of Fly Ash (FA), Lime (L), Silica Fume (SF) and was activated by sodium hydroxide (12 M) and sodium silicate solution, followed by curing under ambient conditions. Glass fibers were utilized in varying proportions (0.125, 0.25, 0.375, 0.5, 0.625, and 0.75%), by weight of the binder mix. It was found that the incorporation of 0.5% glass fiber significantly increased the compressive strength, split tensile strength, and flexural strength properties. From the durability perspective, the samples exhibited good resistance against seawater, MgSO4 solution, and H2SO4 when compared with the control mix. Further, the Scanning Electron Microscope (SEM) analysis was employed to explore the nature of the geopolymer–fiber matrix. It was revealed that excellent interfacial bonding existed between fiber and the geopolymer matrix. The results indicate that addition of C-glass fibers significantly improves the overall mechanical performance of FA-GPC. The research presented here establishes the advantages of using C-glass fibers-based geopolymer concrete, thus encouraging its broader utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AR:

Alkali resistance

BIS:

Bureau of Indian Standards

C:

Chemical or corrosion

CAgg:

Coarse aggregates

CTM:

Compression testing machine

E:

Electrical

FA:

Fly ash

FAgg:

Fine aggregates

FA-GPC:

Fly ash-based geopolymer concrete

FCA:

Ferrochrome ash

FTM:

Flexural testing machine

GFRFGC:

Glass fiber reinforced fly ash based geopolymer concrete

GGBFS:

Ground granulated blast furnace slag

GPC:

Geopolymer concrete

Kg:

Kilogram

L:

Lime

M:

Molarity

MPa:

Megapascal

Na2SiO3 :

Sodium silicate

NaOH:

Sodium hydroxide

OPC:

Ordinary Portland Cement

RHA:

Rice husk ash

Rs.:

Rupee

SCBA:

Sugarcane bagasse ash

SEM:

Scanning Electron Microscope

SF:

Silica fume

SP:

Superplasticizer

XRD:

X-ray diffraction

XRF:

X-ray fluorescence spectroscopy

References

  1. Mustakim, S.M.; Das, S.K.; Mishra, J.; Aftab, A.; Alomayri, T.S.; Assaedi, H.S.; Kaze, C.R.: Improvement in fresh, mechanical, and microstructural properties of fly ash-blast furnace slag based geopolymer concrete by addition of nano and micro silica. Silicon, pp.1–14 (2020).

  2. Das, S.K.; Mishra, J.; Singh, S.K.; Mustakim, S.M.; Patel, A.; Das, S.K.; Behera, U.: Characterization and utilization of rice husk ash (RHA) in fly ash–Blast furnace slag based geopolymer concrete for sustainable future. Mater. Today: Proc. 33, 5162–5167 (2020)

    Google Scholar 

  3. Rashad, A.M.: A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Mater. Des. 53, 1005–1025 (2014)

    Google Scholar 

  4. Vignesh, P.; Krishnaraja, A.R.; Nandhini, N.: Study on mechanical properties of geopolymer concrete using m-sand and glass fibers. Int. J. Innovative Res. Sci. Eng. Technol. 3(2), 110 (2014)

    Google Scholar 

  5. Bashar, I.I.; Alengaram, U.J.; Jumaat, M.Z.; Islam, A.; Santhi, H.; Sharmin, A.: Engineering properties and fracture behaviour of high volume palm oil fuel ash based fibre reinforced geopolymer concrete. Constr. Build. Mater. 111, 286–297 (2016)

    Google Scholar 

  6. Madheswaran, C.K.; Ambily, P.S.; Rajamane, N.P.; Arun, G.: Studies on flexural behaviour of reinforced geopolymer concrete beams with lightweight aggregates. Int. J. Civ. Struct. Eng. 4(3), 295–305 (2014)

    Google Scholar 

  7. Reed, M.; Lokuge, W.; Karunasena, W.: Fibre-reinforced geopolymer concrete with ambient curing for in situ applications. J. Mater. Sci. 49(12), 4297–4304 (2014)

    Google Scholar 

  8. Hardjito, D.; Wallah, S.E.; Sumajouw, D.M.J.; Rangan, B.V.: August. Introducing fly ash-based geopolymer concrete: manufacture and engineering properties. In 30th conference on our world in concrete & structures (Vol. 24) (2005)

  9. Das, S.K.; Mishra, J.; Mustakim, S.M.; Adesina, A.; Kaze, C.R.; Das, D.: Sustainable utilization of ultrafine rice husk ash in alkali-activated concrete: Characterization and performance evaluation. J. Sustain. Cement-Based Mater., pp.1–19 (2021).

  10. Krishna, R.S.; Shaikh, F.; Mishra, J.; Lazorenko, G.; Kasprzhitskii, A.: Mine tailings-based geopolymers: Properties, applications and industrial prospects. Ceram. Int. 47(13), 17826–17843 (2021)

    Google Scholar 

  11. Sikder, A.; Saha, P.: Effect of different types of Waste as Binder on Durability Properties of Geopolymer Concrete: A Review. In IOP Conference Series: Earth and Environmental Science (Vol. 796, No. 1, p. 012018). Bristol: IOP Publishing (2021).

  12. Uma, K.; Anuradha, R.; Venkatasubramani, R.: Experimental investigation and analytical modeling of reinforced geopolymer concrete beam. Int. J. Civ. Struct. Eng. 2(3), 817–827 (2012)

    Google Scholar 

  13. Vijai, K.; Kumutha, R.; Vishnuram, B.G.: Properties of glass fibre reinforced geopolymer concrete composites. Asian J. Civ. Eng. 13(4), 511–520 (2012)

    Google Scholar 

  14. Al-Majidi, M.H.; Lampropoulos, A.; Cundy, A.B.: Tensile properties of a novel fibre reinforced geopolymer composite with enhanced strain-hardening characteristics. Compos. Struct. 168, 402–427 (2017)

    Google Scholar 

  15. Samal, S.; Marvalová, B.; Petríková, I.; Vallons, K.A.; Lomov, S.V.; Rahier, H.: Impact and post impact behavior of fabric reinforced geopolymer composite. Constr. Build. Mater. 127, 111–124 (2016)

    Google Scholar 

  16. Nematollahi, B.; Sanjayan, J.; Chai, J.X.H.; Lu, T.M.: Properties of fresh and hardened glass fiber reinforced fly ash based geopolymer concrete. In Key Engineering Materials (Vol. 594, pp. 629–633). Switzerland: Trans Tech Publications Ltd (2014).

  17. Mishra, J.; Das, S.K.; Krishna, R.S.; Nanda, B.; Patro, S.K.; Mustakim, S.M.: Synthesis and characterization of a new class of geopolymer binder utilizing ferrochrome ash (FCA) for sustainable industrial waste management. Mater. Today: Proc. 33, 5001–5006 (2020)

    Google Scholar 

  18. Korniejenko, K.; Mikula, J.; Lach, M.: Characterization of mechanical properties of short glass fiber reinforced geopolymer composites. In Proceedings of the 10th International Conference on Composite Science and Technology, Lisboa, Portugal (pp. 2–4) (2015).

  19. Mermerdaş, K.; MulapeeR, E.S.; Oleiwi, S.M.: Effect of glass fiber addition on the strength properties and pore structure of fly ash based geopolymer composites. Eskişehir Tech. Univ. J. Sci. Technol. A-Appl. Sci. Eng. 20(4), 427–435 (2019)

    Google Scholar 

  20. Al-Mashhadani, M.M.; Canpolat, O.; Aygörmez, Y.; Uysal, M.; Erdem, S.: Mechanical and microstructural characterization of fiber-reinforced fly ash based geopolymer composites. Constr. Build. Mater. 167, 505–513 (2018)

    Google Scholar 

  21. Shinde, B.H.; Kadam, K.N.: Properties of fly ash based geopolymer mortar with ambient curing. Int. J. Eng. Res. 5(1), 203–206 (2016)

    Google Scholar 

  22. Alomayri, T.; Shaikh, F.U.A.; Low, I.M.: Effect of fabric orientation on mechanical properties of cotton fabric reinforced geopolymer composites. Mater. Des. 57, 360–365 (2014)

    Google Scholar 

  23. Li, W.; Xu, J.: Impact characterization of basalt fiber reinforced geopolymeric concrete using a 100-mm-diameter split Hopkinson pressure bar. Mater. Sci. Eng., A 513, 145–153 (2009)

    Google Scholar 

  24. Ranjbar, N.; Mehrali, M.; Behnia, A.; Javadi Pordsari, A.; Mehrali, M.; Alengaram, U.J.; Jumaat, M.Z.: A comprehensive study of the polypropylene fiber reinforced fly ash based geopolymer. PLoS ONE 11(1), e0147546 (2016)

    Google Scholar 

  25. Midhun, M.S.; Rao, T.G.; Srikrishna, T.C.: Mechanical and fracture properties of glass fiber reinforced geopolymer concrete. Adv. Concrete Const. 6(1), 29 (2018)

    Google Scholar 

  26. Ganesh, A.C.; Muthukannan, M.: Development of high performance sustainable optimized fiber-reinforced geopolymer concrete and prediction of compressive strength. J. Clean. Prod. 282, 124543 (2021)

    Google Scholar 

  27. Sufian, S.: The microstructural and mechanical properties of glass fiber reinforced geopolymer composites. Malaysian J. Microscopy, 15(1) (2019).

  28. Chawla, K.K.: Glass fibers. In: Encyclopedia of Materials: Science and Technology, pp. 3541–3545 (2001)

  29. Funke, H.; Gelbrich, S.; Kroll, L.: The durability and performance of short fibers for a newly developed alkali-activated binder. Fibers 4(1), 11 (2016)

    Google Scholar 

  30. Ghugal, Y.M.; Deshmukh, S.B.: Performance of alkali-resistant glass fiber reinforced concrete. J. Reinf. Plast. Compos. 25(6), 617–630 (2006)

    Google Scholar 

  31. Iskender, M.; Karasu, B.: Glass fibre reinforced concrete (GFRC). El-Cezerî Fen ve Mühendislik Dergisi 5, 136–162 (2018)

    Google Scholar 

  32. Madhava Perumal, R.; Jasper Daniel, J.; Suriya, S.; Vignesh, R.: Experimental study on glass fiber reinforced geopolymer concrete. J. Appl. Sci. Comput. (JASC) 6(5), 135–141 (2019)

    Google Scholar 

  33. Alizade, E.; Jandaghi, A.F.; Zabihi, S.: Effect of steel fiber corrosión on mechanical properties of steel fiber reinforced concrete (2016).

  34. Lakshmi, K.; Rao, M.S.N.: Experimental study on geopolymer concrete by using glass fibres. Int. Res. J. Eng. Technol. (IRJET) 6(11), 1693–1698 (2019)

    Google Scholar 

  35. Rautray, S.S.; Mohanty, B.N.; Das, M.R.: Performance of self-compacting geopolymer concrete using Bacillus Licheniformis. Mater. Today: Proc. 26, 2817–2824 (2020)

    Google Scholar 

  36. BIS 383: 1970, 1970, Coarse and fine aggregate from natural sources of concrete 9th Revision, BIS, New Delhi.

  37. IS 10086-1982, Indian Standard specification for moulds for use in tests of cement and concrete-V Reprint December 1995, Bureau of Indian Standard, New Delhi-110 002

  38. IS: 516-1959, Indian standard methods of tests for strength of concrete, Bureau of Indian Standards, New Delhi, India.

  39. Jain, M.N.N.; Hake, S.L.; Shirsath, M.N.: Geopolymer concrete with lime addition at normal room temperature. JournalNX 2(8), 13–16 (2016)

    Google Scholar 

  40. Adam, A.A.; Amiri, N.H.; Suarnita, I.W.; Rupang, N.: The effect of lime addition on the setting time and strength of ambient cured fly ash based geopolymer binder. In MATEC web of conferences (Vol. 47, p. 01015). EDP Sciences (2016).

  41. Okoye, F.N.; Durgaprasad, J.; Singh, N.B.: Effect of silica fume on the mechanical properties of fly ash based geopolymer concrete. Ceram. Int. 42(2), 3000–3006 (2016)

    Google Scholar 

  42. Das, S.K.; Mustakim, S.M.; Adesina, A.; Mishra, J.; Alomayri, T.S.; Assaedi, H.S.; Kaze, C.R.: Fresh, strength and microstructure properties of geopolymer concrete incorporating lime and silica fume as replacement of fly ash. J. Build. Eng. 32, 101780 (2020)

    Google Scholar 

  43. Raval, V.; Nisarg, P.; Digvijaysinh, M.; Umang, G.; Mistry, J.: Improving structure integrity with fibre reinforced concrete. Int. Res. J. Eng. Technol. (IRJET) 06(04), 2920–2924 (2019)

    Google Scholar 

  44. Kumar, R.; Suman, S.K.; Sharma, M.: Laboratory investigation on the synthesis and mechanical characterization of fiber-reinforced geopolymer concrete. Mater. Today: Proc. 32, 268–273 (2020)

    Google Scholar 

  45. Rao, K.J.; Ramlal, C.S.S.B.; Sandeep, D.; Rao, M.V.S.: A Study on the Fresh and Hardened Properties of Fly-Ash Based Glass Fiber Reinforced Geopolymer Concrete. Int. J. Earth Sci. Eng. 9(2), 560–567 (2016)

    Google Scholar 

  46. Ravichandran, G.; Sivaraja, M.; Jegan, M.; Harihanandh, M.; Krishnaraja, A.: Performance of glass fiber reinforced geopolymer concrete under varying temperature effect. Technology 9(4), 1316–1323 (2018)

    Google Scholar 

  47. Ganesh, C.; Muthukannan, M.: Investigation on the glass fiber reinforced geopolymer concrete made of M-sand. J. Mater. Eng. Struct. 6(4), pp.501–512 (2019).

  48. Shaikh, F.U.A.: Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites. Mater. Des. 50, 674–682 (2013)

    Google Scholar 

  49. Sikder, A.; Bera, D.; Rath, A.: Bamboo as a green building material in construction industry—a review. In International Conference on Recent Advances in Mechanics and Materials (ICRAMM-2016). pp.269–273 (2016).

  50. Abbas, R.; Khereby, M.A.; Ghorab, H.Y.; Elkhoshkhany, N.: Preparation of geopolymer concrete using Egyptian kaolin clay and the study of its environmental effects and economic cost. Clean Technol. Environ. Policy 22(3), 669–687 (2020)

    Google Scholar 

  51. Thaarrini, J.; Dhivya, S.: Comparative study on the production cost of geopolymer and conventional concretes. Int. J. Civil Eng. Res. 7(2), 117–124 (2016)

    Google Scholar 

  52. Shah, N.A.; Khandare, M.; Comparative study of strength & cost of fiber reinforced geopolymer concrete and conventional (OPC) concrete. Int. Res. J. Eng. Technol. (IRJET) 5(6), 1724–1729 (2018)

    Google Scholar 

  53. Khale, D.; Chaudhary, R.: Mechanism of geopolymerization and factors influencing its development: a review. J. Mater. Sci. 42(3), 729–746 (2007)

    Google Scholar 

  54. Saral, J.A.; Gayathri, S.; Tamilselvi, M.; Raj, B.R.: An experimental study on fibre reinforced geopolymer concrete composites-glass fibre, Copper Slag. Int. J. Eng. Technolo., 7(3.34), 433–435 (2018).

  55. Sathanandam, T.; Awoyera, P.O.; Vijayan, V.; Sathishkumar, K.: Low carbon building: Experimental insight on the use of fly ash and glass fibre for making geopolymer concrete. Sustain. Environ. Res. 27(3), 146–153 (2017)

    Google Scholar 

  56. Sathish, K.; Blessen, S.T.; Alex, C.: An experimental study of the properties of glass fiber reinforced geopolymer concrete. Int. J. Eng. Res. Appl. 2(6), 722–726 (2012)

    Google Scholar 

  57. Bhalchandra, S.A.; Bhosle, A.Y.: Properties of glass fibre reinforced geopolymer concrete. Int. J. Modern Eng. Res. (IJMER) 3(4), 2007–2010 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the faculties from KIIT University, Bhubaneswar, Odisha, India: Dr. Ashoke Ku. Rath and Dr. Dillip Ku. Bera, Dr. Purnachandra Saha, and faculties from VSSUT, Burla, Odisha, India: Dr. Sanjaya Ku. Patro and Dr. Bharadwaj Nanda for their guidance during the experimental investigations and proofreading of the manuscript. The authors also acknowledge the support from Dr. S.M. Mustakim and the laboratory staff of CSIR—Institute of Minerals and Materials Technology, Bhubaneswar, Odisha, India, for their help in completing this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmoy Mishra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sikder, A., Mishra, J., Krishna, R.S. et al. Evaluation of the Mechanical and Durability Properties of Geopolymer Concrete Prepared with C-Glass Fibers. Arab J Sci Eng 48, 12759–12774 (2023). https://doi.org/10.1007/s13369-022-07558-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07558-y

Keywords

Navigation