Skip to main content
Log in

A Multiphysics Sealing Mechanism Model of Rotary Lip Seals under Mixed Lubricating Conditions Considering the Effects of the Meniscus

  • Research Article-mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Lip seals are one kind of the most widely used rotary seals. Most of the published researches on sealing mechanism cannot describe the mixed lubrication conditions of the sealing zone precisely. In especial, the sealing zone is always assumed to be fall of fluid, resulting in effects of the meniscus and the varying lubricating conditions are neglected. Furthermore, the multiphysics issue is also not handled well up to the present. Hence, a multiphysics sealing mechanism model of rotary lip seals under mixed lubricating conditions is proposed in this paper. Surface tension theory is introduced to determine the location and the surface tension of the ingested meniscus. The fluid–thermal–structural coupling relationship is also considered. The multiphysics coupling issue is handled by iteration method. The proposed model is validated by comparing the simulation results to experimental observations. The effects of the shaft speed and sealing lip roughness on the seal performance are numerically analyzed based on the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Abbreviations

EHD:

Elastohydrodynamic

FE:

Finite element

G–W:

Greenwood–Williamson

NBR:

Nitrite butadiene rubber

PDF:

Probability density function

RMS:

Root mean square

TEHD:

Thermoelastohydrodynamic

A :

Simulation area

C p :

Specific heat of the fluid

D :

Universal variable

E :

Elastic modulus

F :

Cavitation index

F s :

Preload force provided by the spring

H avg :

Average film thickness of the sealing zone

L :

Length of the shaft

L x :

Circumferential length of simulation space

P 1 :

Fluid pressure at the meniscus

P a :

Ambient pressure

P s :

Sealed pressure

Q :

Leakage rate of seal

R :

Axis radius

R c :

Radial radius of the meniscus

T :

Average temperature of the sealing zone

T ref :

Reference temperature

U :

Shaft speed

a :

Viscosity coefficient

b :

Width of the sealing zone

h :

Film thickness

h 0 :

Seal lip profile

h c :

Heat transfer coefficient of the shaft

h seal :

Surface of the seal lip

l m :

Distance from the air-side edge to meniscus

p cav :

Cavitation pressure

p h :

Hydrodynamic pressure

p sc :

Static contact pressure

q :

Reverse pumping rate

r :

Radius of the curvature of the asperity

x :

Circumferential direction

y :

Axial direction

z :

Radial direction

γ 0 :

Surface tension coefficient

θ :

Air angle of the lip seal

δ S -S :

Interference between seal and rotary shaft

δ x :

Tangential deformation of the seal lip

δ z :

Normal deformation of the seal lip

η :

Asperity density

λ :

Contact load ratio

λ x :

Correlation length in x-direction

λ y :

Correlation length in y-direction

μ :

Viscosity of the fluid at temperature T

μ 0 :

Viscosity of the fluid at temperature T0

μ c :

Dry friction coefficient

σ :

The root mean square (RMS) roughness

τ a :

Dry friction shear stress

τ h :

Viscous shearing stress

τ h :

Viscous shearing stress

Ф :

Total heat dissipation of the lip seal system

Ф a :

Friction dissipation

Ф h :

Viscous dissipation

ϕ(z):

PDF of surface height distribution

References

  1. Parmar, S.; Upadhyay, R.V.; Parekh, K.: Optimization of design parameters affecting the performance of a magnetic fluid rotary seal. Arab. J. Sci. Eng. 46, 2343–2348 (2021)

    Article  Google Scholar 

  2. Zhou, W.; Wu, G.; Qiu, N., et al.: Influence of exit-recovery coefficient on the leakage and dynamic characteristics of annular seal. Arab. J. Sci. Eng. 44, 1291–1303 (2019)

    Article  Google Scholar 

  3. Liu, D.; Wang, S.P.; Tomovic, M.M.: Degradation modeling method for rotary lip seal based on failure mechanism analysis and stochastic process. Eksploatacja i Niezawodnosc 22, 381–390 (2020)

    Article  Google Scholar 

  4. Liu, D.; Wang, S.P.; Shi, J.: Mixed elastohydrodynamic lubrication model of rotary lip seal with non-Gaussian surfaces: experimentation verification and numerical analysis on effects of sealed pressure. Sci. Progr. (2021). https://doi.org/10.1177/00368504211017010

    Article  Google Scholar 

  5. Müller, H.K.: Concepts of sealing mechanism of rubber lip type rotary shaft seals. In: Proceedings of the BHRA 11th International Conference on Fluid Sealing, Cannes. 11–15, pp 698–709(1987)

  6. Guo, F.; Jia, X.H.; Hua, L., et al.: Theoretical model and experimental verification of mixed lubrication of rubber—plastic shaft seal of rotary shaft. J. Mech. Eng. 50, 137–144 (2014)

    Article  Google Scholar 

  7. Kozuch, E.; Nomikos, P.; Rahmani, R., et al.: Effect of shaft surface roughness on the performance of radial lip seals. Lubricants 6, 99 (2018)

    Article  Google Scholar 

  8. Salant, R.F.: Numerical analysis of the flow field within lip seals containing microundulations. J. Tribol. 114, 485–491 (1992)

    Article  Google Scholar 

  9. Salant, R.F.; Flaherty, A.L.: Elastohydrodynamic analysis of reverse pumping in rotary lip seals with microundulations. J. Tribol. 116, 56–62 (1994)

    Article  Google Scholar 

  10. Salant, R.F.; Flaherty, A.L.: Elastohydrodynamic analysis of reverse pumping in rotary lip seals with microasperities. J. Tribol. 117, 53–59 (1995)

    Article  Google Scholar 

  11. Salant, R.F.: Elastohydrodynamic model of the rotary lip seal. J. Tribol. 118, 292–296 (1996)

    Article  Google Scholar 

  12. Salant, R.F.: Rotary lip seal operation with an ingested meniscus. J. Tribol. 119, 205–210 (1997)

    Article  Google Scholar 

  13. Salant, R.F.: Theory of lubrication of elastomeric rotary shaft seals. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 213, 189–201 (1999)

    Article  Google Scholar 

  14. Shen, D.; Salant, R.F.: Elastohydrodynamic analysis of the effect of shaft surface finish on rotary lip seal behavior. Tribol. Trans. 46, 391–396 (2003)

    Article  Google Scholar 

  15. Shen, D.; Salant, R.F.: A transient mixed lubrication model of a rotary lip seal with a rough shaft. Tribol. Trans. 49, 621–634 (2006)

    Article  Google Scholar 

  16. Shen, D.; Salant, R.F.: An unsteady mixed soft EHL model, with application to a rotary lip seal. Tribol. Int. 40, 646–651 (2007)

    Article  Google Scholar 

  17. Salant, R.F.: Soft elastohydrodynamic analysis of rotary lip seals. Proc. Inst. Mech Eng. Part C J. Mech. Eng. Sci. 224, 2637–2647 (2010)

    Article  Google Scholar 

  18. Guo, F.; Jia, X.; Suo, S.; Salant, R.F.; Wang, Y.: A mixed lubrication model of a rotary lip seal using flow factors. Tribol. Int. 57, 195–201 (2013)

    Article  Google Scholar 

  19. Stakenborg, M.J.L.: On the sealing mechanism of radial lip seals. Tribol. Int. 21, 335–340 (1988)

    Article  Google Scholar 

  20. Kang, Y.S.; Sadeghi, F.: Numerical analysis of temperature distribution at the lip seal-shaft interface. J. Tribol. 119, 273–278 (1997)

    Article  Google Scholar 

  21. Day, K.; Salant, R.F.: Thermal elastohydrodynamic model of a radial lip seal, part I-analysis and base results. J. Tribol. 121, 1–10 (1999)

    Article  Google Scholar 

  22. Hajjam, M.; Bonneau, D.: Influence of the roughness model on the thermoelastohydrodynamic performances of lip seals. Tribol. Int. 39, 198–205 (2006)

    Article  Google Scholar 

  23. Zhou, Q.; Li, Z.M.; Sang, S.J., et al.: A numerical simulation method for hydrodynamic lubrication of lip seal. Proc Inst Mech Eng Part J: J Eng Tribol. 226, 99–110 (2012)

    Article  Google Scholar 

  24. Zhou, Q.; Li, Z.; Tang, J., et al.: Thermoelastohydrodynamic analysis of auto water pump bearing seal. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 227, 1101–1116 (2013)

    Article  Google Scholar 

  25. Zhou, Q.; Li, Z.M.; Wu, Y.: Numerical simulation method of leakage for lip seal. Appl. Mech. Mater. 709, 196–199 (2015)

    Article  Google Scholar 

  26. Salant, R.F.: Analysis of the transient behavior of rotary lip seals-fluid mechanics and bulk deformation. Tribol. Trans. 41, 471–474 (1998)

    Article  Google Scholar 

  27. Liu, D.; Wang, S.; Zhang, C.; Tomovic, M.M.: Numerical study of the effects of textured shaft on the wear of rotary lip seals. Tribol. Int. 138, 215–238 (2019)

    Article  Google Scholar 

  28. Greenwood, J.A.; Williamson, J.B.P.: Contact of nominally flat surfaces. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. pp. 300–319 (1966)

  29. Liu, D.; Wang, S.P.; Zhang, C.: A multiscale wear simulation method for rotary lip seal under mixed lubricating conditions. Tribol. Int. 121, 190–203 (2018)

    Article  Google Scholar 

  30. Roelands, C.J.A.; Vluger, J.C.; Waterman, H.I.: The viscosity-temperature-pressure relationship for lubricating oils and its correlation with chemical constitution. J. Basic Eng. 85, 601–607 (1963)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (52105045), Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems (GZKF-202106), Young Elite Scientist Sponsorship Program by CAST (YESS20210058) and Science and Technology Innovation 2025 Major Project of Ningbo of China (Grant No. 2022Z005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Liu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, J., Duan, X., Liu, D. et al. A Multiphysics Sealing Mechanism Model of Rotary Lip Seals under Mixed Lubricating Conditions Considering the Effects of the Meniscus. Arab J Sci Eng 48, 11727–11739 (2023). https://doi.org/10.1007/s13369-022-07556-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07556-0

Keywords

Navigation