Skip to main content

Advertisement

Log in

Performance Analysis of Diverse-Source Interconnected Power System with Internal Model Controller in the Presence of EVs

  • Research Article-electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In recent years, the use of renewable energy in power systems has increased significantly. This affects the inertia of the system. Also, the intermittent nature of renewable energy sources causes voltage and frequency fluctuations. This study suggests electric vehicles (EVs) as energy storage options for the diverse sources of an interconnected power system to resolve these issues. This paper also introduces the internal model control controller for load frequency control of an interconnected power system considering flexible AC transmission system and energy storage devices. The present study considers a two-area interconnected power system with thermal, hydro, and gas-generating units. The gain of the proposed controller is optimized using the particle swarm optimization technique. The advantages of the proposed controller have been highlighted by analyzing the results with conventional proportional–integral–derivative and proportional–integral–derivative with filter controller. The model includes superconducting magnetic energy storage (SMES), capacitive energy storage (CES), and redox flow batteries to support the voltage and frequency changes. A static synchronous series compensator compensates the tie-line. The performance of the SMES and CES units is compared with the proposed EVs used as energy storage units in this paper. The simulation results show that system performances improve significantly in the presence of the proposed energy storage unit. The behavior of the proposed controller is also analyzed under equal and unequal apf values. Finally, the sensitivity of the proposed controller is examined by varying the system parameters in a wide range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

E di :

Voltage variation across capacitor

f 1 & ∆f 2 :

Frequency deviation in area-1 and area-2

f ll :

Dead band lower limit

f lu :

Dead band upper limit

I d :

Change in current

I d0 :

Change in current before disturbance

P imax :

Primary reserve upper limit of EV

P imin :

Primary reserve lower limit of EV

P PCL :

Power of primary control loop

P ref :

Reference power

P tie :

Tie-line power deviation

apf:

Area participation factor

B i :

Frequency bias parameter of ith unit

c 1 & c 2 :

Acceleration coefficients

e(t):

Error signal

E d0 :

Capacitor voltage before disturbance

f best :

Best fitness function

G p(s):

System to be control

H p(s):

Model of the system to be control

I :

DC current flowing in the SMES coil

i = 1, 2, 3..:

Represents number of area

I 2 R :

Power loss across SMES coil

I d0 :

Capacitor current before disturbance

K :

Degree of compensation

K CES :

Gain of CES unit

K d :

Derivative gain of controller

K EV :

Gain of EV

K i :

Participation factor of ith unit

K i :

Integral gain of controller

K p :

Proportional gain of controller

K pmax, K imax & K dmax :

Maximum values of proportional, integral and derivative controller gain parameters

K pmin, K imin & K dmin :

Minimum values of proportional, integral and derivative controller gain parameters

K r :

Reset gain of RFB

K RFB :

Gain of RFB

K SMES :

Gain of SMES unit

K SSSC :

Gain of SSSC

L :

Inductance of SMES coil

N :

Derivative filter coefficient

P d0 :

Capacitor power before disturbance

P R :

Rated area capacity

Q(s):

Model-based controller

r 1 & r 2 :

Random numbers

R i :

Regulation parameter of ith unit

T o :

Synchronizing coefficient of tie-line

T 1 :

Droop time constant

T 2 :

Main servo time constant

T 3 :

Valve positioned constant

T 4 :

Speed governor lag time

T 5 :

Fuel time constant

T 6 :

Discharge volume time constant

T d :

Time delay constant of RFB

T H :

Hydraulic time constant

T P :

Power system time constant

T Q :

Combustion reaction time delay

T r :

Reset time constant of RFB

T R :

Speed governor rest time

t sim :

Simulation time

T SSSC :

Time constant of SSSC

T T :

Turbine time constant

T W :

Water time constant

U :

Input

V :

Voltage across SMES coil

V 1 :

Area-1 voltage

V 2 :

Area-2 voltage

V C :

Voltage across compensating capacitor

V L :

Voltage across tie-line inductor

X eff :

Net impedance of SSSC

Y :

Output

Y set :

Desired output

References

  1. Rizwan, M.; Hong, L.; Muhammad, W.; Waqar Azeem, S.; Li, Y.: Hybrid Harris Hawks optimizer for integration of renewable energy sources considering stochastic behavior of energy sources. Int. Trans. Electr. Energy Syst. (2021). https://doi.org/10.1002/2050-7038.12694

    Article  Google Scholar 

  2. Sandgani, M.R.; Sirouspour, S.: Coordinated optimal dispatch of energy storage in a network of grid-connected microgrids. IEEE Trans. Sustain. Energy 8, 1166–1176 (2017). https://doi.org/10.1109/TSTE.2017.2664666

    Article  Google Scholar 

  3. Shinde, P.; Hesamzadeh, M.R.; Date, P.; Bunn, D.W.: Optimal dispatch in a balancing market with intermittent renewable generation. IEEE Trans. Power Syst. 36, 865–878 (2021). https://doi.org/10.1109/TPWRS.2020.3014515

    Article  Google Scholar 

  4. Rocabert, J.; Capó-Misut, R.; Muñoz-Aguilar, R.S.; Candela, J.I.; Rodriguez, P.: Control of energy storage system integrating electrochemical batteries and supercapacitors for grid-connected applications. IEEE Trans. Ind. Appl. 55, 1853–1862 (2019). https://doi.org/10.1109/TIA.2018.2873534

    Article  Google Scholar 

  5. Abouzeid, S.; Guo, Y.; Zhang, H.-C.: Coordinated control of the conventional units, wind power, and battery energy storage system for effective support in the frequency regulation service. Int. Trans. Electr. Energy. Syst. (2019). https://doi.org/10.1002/2050-7038.2845

    Article  Google Scholar 

  6. Doenges, K.; Egido, I.; Sigrist, L.; Lobato Miguélez, E.; Rouco, L.: Improving AGC performance in power systems with regulation response accuracy margins using battery energy storage system (BESS). IEEE Trans. Power Syst. 35, 2816–2825 (2020). https://doi.org/10.1109/TPWRS.2019.2960450

    Article  Google Scholar 

  7. Iliadis, P.; Ntomalis, S.; Atsonios, K.; Nesiadis, A.; Nikolopoulos, N.; Grammelis, P.: Energy management and techno-economic assessment of a predictive battery storage system applying a load levelling operational strategy in island systems. Int. J. Energy Res. 45, 2709–2727 (2021). https://doi.org/10.1002/er.5963

    Article  Google Scholar 

  8. Abraham, R.J.; Das, D.; Patra, A.: AGC study of a hydrothermal system with SMES and TCPS. Eur. Trans. Electr. Power 19, 487–498 (2009). https://doi.org/10.1002/etep.235

    Article  Google Scholar 

  9. Nanda, J.; Mangla, A.; Suri, S.: Some new findings on automatic generation control of an interconnected hydrothermal system with conventional controllers. IEEE Trans. Energy Convers. 21, 187–194 (2006). https://doi.org/10.1109/TEC.2005.853757

    Article  Google Scholar 

  10. Bhatt, P.; Ghoshal, S.P.; Roy, R.: Optimized automatic generation control by SSSC and TCPS in coordination with SMES for two-area hydro-hydro power system. In: 2009 Int. Conf. Adv. Comput. Control. Telecommun. Technol., 2009, pp. 474–80. https://doi.org/10.1109/ACT.2009.123

  11. Chatterjee, K.; Sankar, R.; Chatterjee, T.K.: SMES coordinated with SSSC of an interconnected thermal system for load frequency control. In: 2012 Asia-Pacific Power Energy Eng. Conf., 2012, pp. 1–4. https://doi.org/10.1109/APPEEC.2012.6307061

  12. Padhan, S.; Sahu, R.K.; Panda, S.: Automatic generation control with thyristor controlled series compensator including superconducting magnetic energy storage units. Ain Shams Eng. J. 5, 759–774 (2014). https://doi.org/10.1016/j.asej.2014.03.011

    Article  Google Scholar 

  13. Subbaramaiah, K.; Jagan Mohan, V.; Reddy, V.C.V.: Improvement of dynamic performance of SSSC and TCPS based hydrothermal system under deregulated scenario employing PSO based dual mode controller. Eur. J. Sci. Res. 57, 230–243 (2011)

    Google Scholar 

  14. Abraham, R.J.; Das, D.; Patra, A.: Effect of capacitive energy storage on automatic generation control. In: 2005 Int. Power Eng. Conf., 2005, pp. 1070–1074 Vol. 2. https://doi.org/10.1109/IPEC.2005.207066

  15. Lee, J.; Kim, J.-H.; Joo, S.-K.: Stochastic method for the operation of a power system with wind generators and superconducting magnetic energy storages (SMESs). IEEE Trans. Appl. Supercond. 21, 2144–2148 (2011). https://doi.org/10.1109/TASC.2010.2096491

    Article  Google Scholar 

  16. Sharma, M.; Dhundhara, S.; Arya, Y.; Prakash, S.: Frequency stabilization in deregulated energy system using coordinated operation of fuzzy controller and redox flow battery. Int. J. Energy Res. 45, 7457–7475 (2021). https://doi.org/10.1002/er.6328

    Article  Google Scholar 

  17. Oshnoei, S.; Oshnoei, A.; Mosallanejad, A.; Haghjoo, F.: Novel load frequency control scheme for an interconnected two-area power system including wind turbine generation and redox flow battery. Int. J. Electr. Power Energy Syst. 130, 107033 (2021). https://doi.org/10.1016/j.ijepes.2021.107033

    Article  Google Scholar 

  18. Shankar, R.; Bhushan, R.; Chatterjee, K.: Small-signal stability analysis for two-area interconnected power system with load frequency controller in coordination with FACTS and energy storage device. Ain Shams Eng. J. 7, 603–612 (2016). https://doi.org/10.1016/j.asej.2015.06.009

    Article  Google Scholar 

  19. Tayal, V.K.; Lather, J.S.: Reduced order H∞ TCSC controller & PSO optimized fuzzy PSS design in mitigating small signal oscillations in a wide range. Int. J. Electr. Power Energy Syst. 68, 123–131 (2015). https://doi.org/10.1016/j.ijepes.2014.12.033

    Article  Google Scholar 

  20. Panda, S.; Padhy, N.P.: Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput. 8, 1418–1427 (2008). https://doi.org/10.1016/j.asoc.2007.10.009

    Article  Google Scholar 

  21. Gaber Magdy, G.; Shabib, A.A.; Elbaset, Y.M.: Optimized coordinated control of LFC and SMES to enhance frequency stability of a real multi-source power system considering high renewable energy penetration. Prot. Control Mod. Power Syst. (2018). https://doi.org/10.1186/s41601-018-0112-2

    Article  Google Scholar 

  22. Sahin, E.: Design of an optimized fractional high order differential feedback controller for load frequency control of a multi-area multi-source power system with nonlinearity. IEEE Access 8, 12327–12342 (2020). https://doi.org/10.1109/ACCESS.2020.2966261

    Article  Google Scholar 

  23. Abaeifar, A.; Barati, H.; Tavakoli, A.R.: Inertia-weight local-search-based TLBO algorithm for energy management in isolated micro-grids with renewable resources. Int. J. Electr. Power Energy Syst. 137, 107877 (2022). https://doi.org/10.1016/j.ijepes.2021.107877

    Article  Google Scholar 

  24. Yilmaz, M.; Krein, P.T.: Review of the Impact of vehicle-to-grid technologies on distribution systems and utility interfaces. IEEE Trans. Power Electron. 28, 5673–5689 (2013). https://doi.org/10.1109/TPEL.2012.2227500

    Article  Google Scholar 

  25. Debbarma, S.; Dutta, A.: Utilizing electric vehicles for LFC in restructured power systems using fractional order controller. IEEE Trans. Smart Grid 8, 2554–2564 (2017). https://doi.org/10.1109/TSG.2016.2527821

    Article  Google Scholar 

  26. Tan, W.: Unified tuning of PID load frequency controller for power systems via IMC. Power Syst. IEEE Trans. 25, 341–350 (2010). https://doi.org/10.1109/TPWRS.2009.2036463

    Article  Google Scholar 

  27. Hemmati, R.; Faraji, H.; Beigvand, N.Y.: Multi objective control scheme on DFIG wind turbine integrated with energy storage system and FACTS devices: steady-state and transient operation improvement. Int. J. Electr. Power Energy Syst. 135, 107519 (2022). https://doi.org/10.1016/j.ijepes.2021.107519

    Article  Google Scholar 

  28. Gayathri, N.S.; Senroy, N.; Kar, I.N.: Smoothing of wind power using flywheel energy storage system. IET Renew. Power Gener. 11, 289–298 (2017). https://doi.org/10.1049/iet-rpg.2016.0076

    Article  Google Scholar 

  29. Singh, K.; Amir, M.; Ahmad, F.; Khan, M.A.: An integral tilt derivative control strategy for frequency control in multimicrogrid system. IEEE Syst. J. 15, 1477–1488 (2021). https://doi.org/10.1109/JSYST.2020.2991634

    Article  Google Scholar 

  30. Dutta, A.; Debbarma, S.: Frequency regulation in deregulated market using vehicle-to-grid services in residential distribution network. IEEE Syst. J. 12, 2812–2820 (2018). https://doi.org/10.1109/JSYST.2017.2743779

    Article  Google Scholar 

  31. Ahmed, M.; Magdy, G.; Khamies, M.; Kamel, S.: Modified TID controller for load frequency control of a two-area interconnected diverse-unit power system. Int. J. Electr. Power Energy Syst. 135, 107528 (2022). https://doi.org/10.1016/j.ijepes.2021.107528

    Article  Google Scholar 

  32. Rerkpreedapong, D.; Hasanovic, A.; Feliachi, A.: Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Trans. Power Syst. 18, 855–861 (2003). https://doi.org/10.1109/TPWRS.2003.811005

    Article  Google Scholar 

  33. Behera, A.; Panigrahi, T.K.; Ray, P.K.; Sahoo, A.K.: A novel cascaded PID controller for automatic generation control analysis with renewable sources. IEEE/CAA J. Autom. Sin. 6, 1438–1451 (2019). https://doi.org/10.1109/JAS.2019.1911666

    Article  Google Scholar 

  34. Mohanty, P.K.; Sahu, B.K.; Pati, T.K.; Panda, S.; Kar, S.K.: Design and analysis of fuzzy PID controller with derivative filter for AGC in multi-area interconnected power system. IET Gener. Transm. Distrib. 10, 3764–3776 (2016). https://doi.org/10.1049/iet-gtd.2016.0106

    Article  Google Scholar 

  35. Izadkhast, S.; Garcia-Gonzalez, P.; Frías, P.: An aggregate model of plug-in electric vehicles for primary frequency control. IEEE Trans. Power Syst. 30, 1475–1482 (2015). https://doi.org/10.1109/TPWRS.2014.2337373

    Article  Google Scholar 

  36. Izadkhast, S.; Garcia-Gonzalez, P.; Frias, P.; Bauer, P.: Design of plug-in electric vehicle’s frequency-droop controller for primary frequency control and performance assessment. IEEE Trans. Power Syst. 32, 4241–4254 (2017). https://doi.org/10.1109/TPWRS.2017.2661241

    Article  Google Scholar 

  37. Gorripotu, T.S.; Sahu, R.K.; Panda, S.: AGC of a multi-area power system under deregulated environment using redox flow batteries and interline power flow controller. Eng. Sci. Technol. Int. J. 18, 555–578 (2015). https://doi.org/10.1016/j.jestch.2015.04.002

    Article  Google Scholar 

  38. Center for Sustainable Systems, University of Michigan. 2022. “U.S. Grid Energy Storage Factsheet.” Pub. No. CSS15–17

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Rajan Shukla.

Appendix 1

Appendix 1

Power system data

T5

T51 = T52 = 0.23 s

PR

PR1 = PR2 = 2000 MW

T6

T61 = T62 = 0.2 s

fo

60 Hz

TQ

TQ1 = TQ2 = 0.3 s

R

R1 = R2 = 2.4 Hz/puMW

CES data

B

B1 = B2 = 0.425

C

1.0 F

KP

KP1 = KP2 = 120

R

100 Ω

TP

TP1 = TP2 = 20 s

TDC

0.05 s

Thermal unit data

KACE

70kA/unit MW

TH

TH1 = TH2 = 0.08 s

Kvd

0.1kA/kV

TT

TT1 = TT2 = 0.3 s

SMES data

Hydro unit data

L

2.65H

T1

T11 = T12 = 28.75 s

TDC

0.03 s

T2

T21 = T22 = 0.2 s

KSMES

100 kV/unit MW

TR

TR1 = TR2 = 5 s

Kid

0.2 kV/kA

TW

TW1 = TW2 = 1 s

RFB data

Gas unit data

TR

0 s

T3

T31 = T32 = 0.05 s

Td

0 s

T4

T41 = T42 = 1.1 s

KR

0

Tp

Tp1 = Tp2 = 0.6 s

KRFB

1.8

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, R.R., Panda, A.K., Garg, M.M. et al. Performance Analysis of Diverse-Source Interconnected Power System with Internal Model Controller in the Presence of EVs. Arab J Sci Eng 48, 14295–14312 (2023). https://doi.org/10.1007/s13369-022-07527-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07527-5

Keywords

Navigation