Skip to main content
Log in

Chiliadenus sericeus subsp. virescens (Maire) Greuter: Phytochemical Assessments, Antimicrobial, Free Radical Scavenging, Antidiabetic, and Antiproliferative Properties

  • Research Article-biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Various Chiliadenus species are extensively dispersed in Palestine and were used in ancient medicine to cure a variety of illnesses. In this regard, the goal of the present study was to characterize Chiliadenus sericeus subsp. virescens (CVS) lipophilic and hydrophilic extracts phytoconstituents and estimate their antimicrobial, antioxidant, antidiabetic, and antiproliferative capabilities. The chemical assessments were determined using standard analytical techniques. The CVS extracts antimicrobial characteristics were estimated using the microdilution method against seven microbial species. Diphenylpicrylhydrazine (DPPH) free radical and α-amylase inhibitory assays were used to assess the extract's antioxidant and antidiabetic capabilities. Furthermore, the MTT colorimetric approach was used to evaluate cell viability and proliferation in different cell lines. The hydrophilic extract suppressed the growth of Methicillin-resistant Staphylococcus aureus (MRSA) strains, making it even more effective than the antibiotic ciprofloxacin. In the case of Staphylococcus aureus, CSV hydrophilic extract at a dose of 2 mg/ml has more potent activity than ampicillin at the same dose. In addition, it has the same inhibitory effect as Fluconazole against Candida albicans. Moreover, compared to Trolox, the hydrophilic extract demonstrated significant antioxidant activity with an IC50 of 15.13 ± 0.72 μg/ml. In addition, the lipophilic extract demonstrated remarkable α-amylase enzyme inhibitory action compared to acarbose. Finally, the lipophilic extract shows cytotoxic effects on all cancer cells examined. Our findings suggest that CSV lipophilic and hydrophilic extracts might be a potential synthetic drugs alternative treatment for oxidative stress-induced illnesses, diabetes, microbial infections, and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All the utilized data to support the findings of the current study are included in the article.

References

  1. García-Huertas, P.; Cardona-Castro, N.: Advances in the treatment of Chagas disease: promising new drugs, plants and targets. Biomed. Pharmacother. 142, 112020 (2021)

    Article  Google Scholar 

  2. Nanayakkara, A.K.; Boucher, H.W.; Fowler, V.G., Jr.; Jezek, A.; Outterson, K.; Greenberg, D.E.: Antibiotic resistance in the patient with cancer: escalating challenges and paths forward. CA Cancer J. Clin. 71, 488–504 (2021)

    Article  Google Scholar 

  3. Abdel-Razek, A.S.; El-Naggar, M.E.; Allam, A.; Morsy, O.M.; Othman, S.I.: Microbial natural products in drug discovery. Processes 8(4), 470 (2020)

    Article  Google Scholar 

  4. Félix, G.; Soto-Robles, C.A.; Nava, E.; Lugo-Medina, E.: Principal metabolites in extracts of different plants responsible for antibacterial effects. Chem. Res. Toxicol. 20, 1970–1983 (2021)

    Article  Google Scholar 

  5. Forman, H.J.; Zhang, H.: Targeting oxidative stress in disease: promise and limitations of antioxidant therapy. Nat. Rev. Drug Discov. 20, 1–21 (2021)

    Google Scholar 

  6. Sundaram Sanjay, S.; Shukla, A.K.: Mechanism of antioxidant activity. Potential Therapeutic Applications of Nano-antioxidants, pp. 83–99. Springer, New York (2021)

  7. Taş, S.; Sarandöl, E.; Tekin, C.N.; Tosunoğlu, A.; Vatan, Ö.; Hürriyet, H., et al.: Monofloral brassica nigra pollen improves oxidative stress and metabolic parameters in streptozotocin-induced diabetic rats. J. Appl. Biol. Sci. 16(3), 563–574 (2022)

    Google Scholar 

  8. Blahova, J.; Martiniakova, M.; Babikova, M.; Kovacova, V.; Mondockova, V.; Omelka, R.: Pharmaceutical drugs and natural therapeutic products for the treatment of type 2 diabetes mellitus. Pharmaceuticals 14(8), 806–811 (2021)

    Article  Google Scholar 

  9. Sen, S.; Chakraborty, R.: Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: importance, challenges and future. J. Tradit. Complement. Med. 7(2), 234–244 (2017)

    Article  Google Scholar 

  10. Kicel, A.; Magiera, A.; Skrzywanek, M.; Malczuk, M.; Olszewska, M.A.: The inhibition of α-glucosidase, α-amylase and protein glycation by phenolic extracts of Cotoneaster bullatus, Cotoneaster zabelii, and Cotoneaster integerrimus leaves and fruits: focus on anti-hyperglycemic activity and kinetic parameters. Molecules 27(20), 7081 (2022)

    Article  Google Scholar 

  11. McCue, P.; Vattem, D.; Shetty, K.: Inhibitory effect of clonal oregano extracts against porcine pancreatic amylase in vitro. Asia Pac. J. Clin. Nutr. 13(4), 401–408 (2004)

    Google Scholar 

  12. Carrera, P.M.; Kantarjian, H.M.; Blinder, V.S.: The financial burden and distress of patients with cancer: understanding and stepping-up action on the financial toxicity of cancer treatment. CA Cancer J. Clin. 68(2), 153–165 (2018)

    Article  Google Scholar 

  13. Liskova, A.; Stefanicka, P.; Samec, M.; Smejkal, K.; Zubor, P.; Bielik, T., et al.: Dietary phytochemicals as the potential protectors against carcinogenesis and their role in cancer chemoprevention. Clin. Exp. Med. 20(2), 173–190 (2020)

    Article  Google Scholar 

  14. Eltamany, E.E.: Genus Chiliadenus is a unique supplier of several chemical flocks: a review. Rec. Pharm. Biomed. Sci. 5, 20–40 (2021)

    Google Scholar 

  15. Brullo, S.: Taxonomic and nomenclatural notes on the genera Jasonia Cass, and Chiliadenus Cass. (Compositae). Webbia 34(1), 289–308 (1979)

    Article  Google Scholar 

  16. Bengtson, A.; Anderberg, A.A.: Species diversification in the Mediterranean genus Chiliadenus (Inuleae-Asteraceae). Plant Syst. Evol. 304(7), 853–860 (2018)

    Article  Google Scholar 

  17. Feinbrun-Dothan, N.: Flora Palaestina. Alismataceae to orchidaceae, p. 111–114. Academy of Sciences and Human, Jerusalem (1986)

    Google Scholar 

  18. Kuntal, D.; Raman, D.; Sivaraman, G.; Ellath, R.P.: Phytochemical screening for various secondary metabolites, antioxidant, and anthelmintic activity of Coscinium fenestratum fruit pulp: a new biosource for novel drug discovery. Turk. J. Pharm. Sci. 15(2), 156–161 (2018)

    Article  Google Scholar 

  19. Siddhuraju, P.; Becker, K.: Antioxidant properties of various solvent extracts of total phenolic constituents from three different agroclimatic origins of drumstick tree (Moringa oleifera Lam.) leaves. J. Agric. Food. Chem. 51(8), 2144–2155 (2003)

    Article  Google Scholar 

  20. Sun, B.; Ricardo-da-Silva, J.M.; Spranger, I.: Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 46(10), 4267–4274 (1998)

    Article  Google Scholar 

  21. Balouiri, M.; Sadiki, M.; Ibnsouda, S.K.: Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6(2), 71–79 (2016)

    Article  Google Scholar 

  22. Brand-Williams, W.; Cuvelier, M.; Berset, C.: Antioxidative activity of phenolic composition of commercial extracts of sage and rosemary. Lwt 28, 25–30 (1995)

    Article  Google Scholar 

  23. Misbah, H.; Aziz, A.A.; Aminudin, N.: Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complement. Altern. Med. 13(1), 1–12 (2013)

    Article  Google Scholar 

  24. Mohammed, F.A.; Elkady, A.I.; Syed, F.Q.; Mirza, M.B.; Hakeem, K.R.; Alkarim, S.: Anethum graveolens (dill)—a medicinal herb induces apoptosis and cell cycle arrest in HepG2 cell line. J. Ethnopharmacol. 219, 15–22 (2018)

    Article  Google Scholar 

  25. Hawash, M.; Jaradat, N.; Abualhasan, M.; Qneibi, M.; Rifai, H.; Saqfelhait, T., et al.: Evaluation of cytotoxic, COX inhibitory, and antimicrobial activities of novel isoxazole-carboxamide derivatives. Lett. Drug Des. Discov. 19, 1–9 (2022)

    Google Scholar 

  26. Dai, J.; Mumper, R.J.: Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15(10), 7313–7352 (2010)

    Article  Google Scholar 

  27. Al-Dabbas, M.M.; Suganuma, T.; Kitahara, K.; Hou, D.-X.; Fujii, M.: Cytotoxic, antioxidant and antibacterial activities of Varthemia iphionoides Boiss. extracts. J. Ethnopharmacol. 108(2), 287–293 (2006)

    Article  Google Scholar 

  28. Flieger, J.; Flieger, W.; Baj, J.; Maciejewski, R.: Antioxidants: classification, natural sources, activity/capacity measurements, and usefulness for the synthesis of nanoparticles. Materials 14(15), 4135 (2021)

    Article  Google Scholar 

  29. Rahman, M.; Islam, M.; Biswas, M.; Khurshid Alam, A.: In vitro antioxidant and free radical scavenging activity of different parts of Tabebuia pallida growing in Bangladesh. BMC Res. Notes 8(1), 1–9 (2015)

    Article  Google Scholar 

  30. Robinson, N.; Jaradat, N.: Is there a simple, quick, and inexpensive method available for in vitro testing of potential herbal products: anti-obesity and antidiabetic activity of Coleus schinzii. Eur. J. Integr. Med. 47, 101377 (2021)

    Article  Google Scholar 

  31. Prior, R.L.; Wu, X.; Schaich, K.: Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53(10), 4290–4302 (2005)

    Article  Google Scholar 

  32. Sbieh, R.; Al-Lahham, S.; Jaradat, N.: Antioxidant, antimicrobial and cytotoxic properties of four different extracts derived from the aerial parts of Chiliadenus iphinoides. Eur. J. Integr. Med. 54, 102149 (2022)

    Article  Google Scholar 

  33. Al-Mustafa, A.H.; Al-Thunibat, O.Y.: Antioxidant activity of some Jordanian medicinal plants used traditionally for treatment of diabetes. Pak. J. Biol. Sci. 1, 351–358 (2008)

    Article  Google Scholar 

  34. Funke, I.; Melzig, M.: Effect of different phenolic compounds on α-amylase activity: screening by microplate-reader based kinetic assay. Pharmazie 60(10), 796–797 (2005)

    Google Scholar 

  35. Tan, Y.; Chang, S.K.; Zhang, Y.: Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem. 214, 259–268 (2017)

    Article  Google Scholar 

  36. Hanahan, D.; Weinberg, R.A.: The hallmarks of cancer. Cell 100(1), 57–70 (2000)

    Article  Google Scholar 

  37. Muller, P.Y.; Milton, M.N.: The determination and interpretation of the therapeutic index in drug development. Nat. Rev. Drug Discov. 11(10), 751–761 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Faculty of Medicine and Health Sciences at An-Najah National University for facilitating the accomplishment of the current study.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

NJ and MA designed the study. All authors performed the experiments. NJ and MA wrote the manuscript. All authors analyzed the data, interpreted the data, and drafted and edited the manuscript. All authors read and approved the final draft.

Corresponding authors

Correspondence to Malik Alqub or Nidal Jaradat.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Ethical Approval

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqub, M., Jaradat, N., Hawash, M. et al. Chiliadenus sericeus subsp. virescens (Maire) Greuter: Phytochemical Assessments, Antimicrobial, Free Radical Scavenging, Antidiabetic, and Antiproliferative Properties. Arab J Sci Eng 48, 7305–7314 (2023). https://doi.org/10.1007/s13369-022-07515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07515-9

Keywords

Navigation