Skip to main content
Log in

Insights of Corrosion Inhibitor Based in Pyridinium Ionic Liquids

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Steel surfaces treated with synthesized ionic liquid (ILs) namedly 4-methyl-1-(3-phenoxypropyl) pyridinium bromide (Pyr1), 4-(dimethylamino)-1-(2-phenoxyethyl) pyridinium bromide (Pyr2) and4-(dimethylamino)-1-(3-phenoxypropyl) pyridinium bromide (Pyr3) were investigated in HCl acid media (1 M) using several techniques. Surfaces were analyzed by SEM and FESEM microscopy and by XPS spectroscopy, while the inhibition process was studied by electrochemical impedance (EIS) measurements. The results obtained by EIS demonstrated a higher charge transfer resistance that led to a high inhibition performance. According to Langmuir isotherm model and the activation parameters, these ILs can be adsorbed onto the mild steel surface through physical and chemical bonds. This study was supported by DFT and Monte Carlo calculations approach which confirms the adsorption behavior of the studied ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Raja, P.B.; Ismail, M.; Ghoreishiamiri, S.; Mirza, J.; Ismail, M.C.; Kakooei, S.; Rahim, A.A.: Reviews on corrosion inhibitors: a short view. Chem. Eng. Comm. 203, 1145 (2016)

    Article  Google Scholar 

  2. Antropov, L.; Makushin, E.M.; Kiev Panasenko, V.F.: Metal Corrosion Inhibitors. Technika, Kiev (1981)

    Google Scholar 

  3. Gadow, H.S.; Motawea, M.M.: Investigation of the corrosion inhibition of carbon steel in hydrochloric acid solution by using ginger roots extract. RSC Adv. 7, 24576–24588 (2017)

    Article  Google Scholar 

  4. Yang, H.M.: Role of organic and eco-friendly inhibitors on the corrosion mitigation of steel in acidic environments—a state-of-art review. Molecules 26(11), 3473 (2021)

    Article  Google Scholar 

  5. Salim, R.; Ech-chihbi, E.; Oudda, H.; El Hajjaji, F.; Taleb, M.; Jodeh, S.: A review on the assessment of imidazole [1,2-a] pyridines as corrosion inhibitor of metals. J Bio Tribo. Corros. 13, 5–11 (2019)

    Google Scholar 

  6. Greaves, T.L.; Drummond, C.J.: Protic ionic liquids: evolving structure-property relationships and expanding applications. Chem. Rev. 115, 11379–11448 (2015)

    Article  Google Scholar 

  7. Varma, R.S.: Greener and sustainable trends in synthesis of organics and nanomaterials. ACS Sustain. Chem. Eng. 4, 5866–5878 (2016)

    Article  Google Scholar 

  8. Verma, C.; Ebenso, E.E.; Quraishi, M.A.: Ionic liquids as green and sustainable corrosion inhibitors for metals and alloys: an overview. J. Mol. Liq. 233, 403–414 (2017)

    Article  Google Scholar 

  9. Quraishi, M.A.; Chauhan, D.S.; Saji, V.S.: Heterocyclic Corrosion Inhibitors: Principles and Applications. Elsevier Inc., Amsterdam (2020)

    Book  Google Scholar 

  10. Likhanova, N.V.; Domínguez-Aguilar, M.A.; Olivares-Xometl, O.; Nava-Entzana, N.; Arce, E.; Dorantes, H.: The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment. Corros. Sci. 52, 2088 (2010)

    Article  Google Scholar 

  11. El Hajjaji, F.; Salim, R.; Messali, M.; Hammouti, B.; Chauhan, D.S.; Almutairi, S.M.; Quraishi, M.A.: Electrochemical studies on new pyridazinium derivatives as corrosion inhibitors of carbon steel in acidic medium. J. Bio. Tribo. Corros. 5(1), 1–13 (2018)

    Google Scholar 

  12. El Hajjaji, F.; Ech-chihbi, E.; Rezki, N.; Benhiba, F.; Taleb, M.; Chauhan, D.S.; Quraishi, M.A.: Electrochemical and theoretical insights on the adsorption and corrosion inhibition of novel pyridinium-derived ionic liquids for mild steel in 1M HCl. J. Mol. Liq. 314, 113737 (2020)

    Article  Google Scholar 

  13. Shukla, S.K.; Murulana, L.C.; Ebenso, E.E.: Inhibitive effect of imidazolium based aprotic ionic liquids on mild steel corrosion in hydrochloric acid medium. Int. J. Electrochem. Sci. 6, 4286–4295 (2012)

    Google Scholar 

  14. Yu, B.; Bansal, D.G.; Qu, J.; Sun, X.; Luo, H.; Dai, S.; Blau, P.J.; Bunting, B.G.; Mordukhovich, G.; Smolenski, D.J.: Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives. Wear 289, 58–64 (2012)

    Article  Google Scholar 

  15. Zucchi, F.; Grassi, V.; Frignani, A.; Trabanell, G.: Inhibition of copper corrosion by silane coatings. Corr. Sci. 46, 2853–2865 (2004)

    Article  Google Scholar 

  16. Tüken, T.; Demir, F.; Kıcır, N.; Siğircik, G.; Erbil, M.: Inhibition effect of 1-ethyl-3-methylimidazolium dicyanamide against steel corrosion. Corr. Sci. 59, 110–118 (2012)

    Article  Google Scholar 

  17. Zheng, X.; Zhang, S.; Li, W.; Gong, M.; Yin, L.: Experimental and theoretical studies of two imidazolium-based ionic liquids as inhibitors for mild steel in sulfuric acid solution. Corr. Sci. 95, 168–179 (2015)

    Article  Google Scholar 

  18. Espinosa, T.; Jiménez, A.E.; Martínez-Nicolás, G.; Sanes, J.; Bermúdez, M.D.: Abrasion resistance of magnesium alloys with surface films generated from phosphonate imidazolium ionic liquids. Appl. Surf. Sci. 320, 267–263 (2014)

    Article  Google Scholar 

  19. Ma, Y.; Han, F.; Li, Z.; Xia, C.: Acidic-functionalized ionic liquid as corrosion inhibitor for 304 stainless steel in aqueous sulfuric acid. ACS Sustain. Chem. Eng. 4, 5046–5052 (2016)

    Article  Google Scholar 

  20. Arrousse, N.; Salim, R.; Houari, G.A.; El Hajjaji, F.; Zarrouk, A.; Rais, Z.; Chauhan, D.S.; Quraishi, M.A.: Experimental and theoretical insights on the adsorption and inhibition mechanism of (2E)-2-(acetylamino)-3-(4-nitrophenyl) prop-2-enoic acid and 4-nitrobenzaldehyde on mild steel corrosion. J. Chem. Sci. 132(1), 112 (2020)

    Article  Google Scholar 

  21. Talebian, M.; Raeissi, K.; Atapour, M.; Fernández-Pérez, B.M.; Salarvand, Z.; Meghdadi, S.; Amirnasr, M.; Souto, R.M.: Inhibitive effect of sodium (E)-4-(4-nitrobenzylideneamino) benzoate on the corrosion of some metals in sodium chloride solution. Appl. Surf. Sci. 447, 852–865 (2018)

    Article  Google Scholar 

  22. Haque, J.; Srivastava, V.; Verma, C.; Lgaz, H.; Salghi, R.; Quraishi, M.A.: N-Methyl-N, N, N-trioctylammonium chloride as a novel and green corrosion inhibitor for mild steel in an acid chloride medium: electrochemical, DFT and MD studies. New J. Chem. 41, 13647–13662 (2017)

    Article  Google Scholar 

  23. El-Hajjaji, F.; Messali, M.; Martínez de Yuso, M.V.; Rodríguez-Castellón, E.; Almutairi, S.; Bandosz, T.J.; Algarra, M.: Effectof 1-(3-phenoxypropyl) pyridazin-1-ium bromideon steel corrosioninhibition in acidicmédium. J. Colloid. Interf. Sci. 541, 418–424 (2019)

    Article  Google Scholar 

  24. Lebrini, M.; Lagrenée, M.; Traisnel, M.; Gengembre, L.; Vezin, H.; Bentiss, F.: Enhanced corrosion resistance of mild steel in normal sulfuric acid medium by 2,5-bis(n-thienyl)-1,3,4-thiadiazoles: electrochemical, x-ray photoelectron spectroscopy and theoretical studies. Appl. Surf. Sci. 253, 9267–9276 (2005)

    Article  Google Scholar 

  25. Bouanis, M.; Tourabi, M.; Nyassi, A.; Zarrouk, A.; Jama, C.; Bentiss, F.: Corrosion inhibition performance of 2,5-bis(4-dimethylaminophenyl)-1,3,4-oxadiazole for carbon steel in HCl solution: Gravimetric, electrochemical and XPS studies. Appl. Surf. Sci. 389, 952–966 (2016)

    Article  Google Scholar 

  26. Ansari, K.R.; Quraishi, M.A.; Singh, A.: Schiff’s base of pyridyl substituted triazoles as new and effective corrosion inhibitors for mild steel in hydrochloric acid solution. Corr. Sci. 79, 5–15 (2014)

    Article  Google Scholar 

  27. Sudheer, S.; Quraishi, M.A.: 2-Amino-3,5-dicarbonitrile-6-thio-pyridines: new and effective corrosion inhibitors for mild steel in 1 M HCl. Ind. Eng. Chem. Res. 53, 2851–2859 (2014)

    Article  Google Scholar 

  28. Sappani, H.K.; Karthikeyan, S.: Experimental and theoretical study on the corrosion inhibition of mild steel by 1-octyl-3-methylimidazolium l-prolinate in sulfuric acid solution. Ind. Eng. Chem. Res. 53, 16349–16358 (2014)

    Article  Google Scholar 

  29. Kowsari, E.; Payami, M.; Amini, R.; Ramezanzadeh, B.; Javanbakht, M.: Task-specific ionic liquid as a new green inhibitor of mild steel corrosion. Appl. Surf. Sci. 289, 478–486 (2014)

    Article  Google Scholar 

  30. El Hajjaji, F.; Salim, R.; Taleb, M.; Benhiba, F.; Rezki, N.; Chauhan, D.S.; Quraishi, M.A.: Pyridinium-based ionic liquids as novel eco-friendly corrosion inhibitors for mild steel in molar hydrochloric acid: experimental and computational approach. Surf. Interfac. 22, 100881 (2021)

    Article  Google Scholar 

  31. El Hajjaji, F.; Ech-Chihbi, E.; Taleb, M.; Benhiba, F.; Rezki, N.; Chauhan, D.S.; Quraishi, M.A.: Electrochemical and theoretical insights on the adsorption and corrosion inhibition of novel pyridinium-derived ionic liquids for mild steel in 1 M HCl. J. Mol. Liq. 314, 113737 (2020)

    Article  Google Scholar 

  32. Aoun, S.B.: On the corrosion inhibition of carbon steel in 1 M HCl with a pyridinium-ionic liquid: chemical, thermodynamic, kinetic and electrochemical studies. RSC Adv. 7(58), 36688–96 (2017)

    Article  Google Scholar 

  33. Aljuhani, A.; El-Sayed, W.S.; Sahu, P.K.; Rezki, N.; Aouad, M.R.; Salghi, R.; Messali, M.: Microwave-assisted synthesis of novel imidazolium, pyridinium and pyridazinium-based ionic liquids and/or salts and prediction of physico-chemical properties for their toxicity and antibacterial activity. J. Mol. Liq. 249, 747–753 (2018)

    Article  Google Scholar 

  34. Sheng, X.; Ting, Y.P.; Pehkonen, S.O.: Evaluation of an organic corrosion inhibitor on abiotic corrosion and microbiologically influenced corrosion of mild steel. Ind. Eng. Chem. Res. 46, 7117–7125 (2018)

    Article  Google Scholar 

  35. Erdoğan, Ş; Safi, Z.S.; Kaya, S.; Işın, D.Ö.; Guo, L.; Kaya, C.: A computational study on corrosion inhibition performances of novel quinoline derivatives against the corrosion of iron. J. Mol. Struct. 1134, 751–761 (2017)

    Article  Google Scholar 

  36. Arrousse, N.; Salim, R.; Kaddouri, Y.; Zarrouk, A.; Zahri, D.; El Hajjaji, F.; Touzani, R.; Taleb, M.; Jodeh, S.: The inhibition behavior of two pyrimidine-pyrazole derivatives against corrosion in hydrochloric solution: experimental, surface analysis and in silico approach studies. Arab. J. Chem. 13(7), 5949–5965 (2020)

    Article  Google Scholar 

  37. Hosseini, M.; Fotouhi, L.; Ehsani, A.; Naseri, M.: Enhancement of corrosion resistance of polypyrrole using metal oxide nanoparticles: potentiodynamic and electrochemical impedance spectroscopy study. J. Colloid Interface Sci. 505, 213–219 (2017)

    Article  Google Scholar 

  38. Ehsani, A.; Moshrefi, R.; Ahmadi, M.: Electrochemical investigation of inhibitory of new synthesized 3-(4-iodophenyl)-2-imino-2, 3-dihydrobenzo [d] oxazol-5-yl 4-methylbenzenesulfonate on corrosion of stainless steel in acidic medium. J. Electrochem. Sci. Technol. 6(1), 7–15 (2015)

    Article  Google Scholar 

  39. Kowsari, E.; Arman, S.Y.; Shahini, M.H.; Zandi, H.; Ehsani, A.; Naderi, R.; PourghasemiHanza, A.; Mehdipour, M.: In situ synthesis, electrochemical and quantum chemical analysis of an amino acid-derived ionic liquid inhibitor for corrosion protection of mild steel in 1M HCl solution. Corros. Sci. 112, 73–85 (2016)

    Article  Google Scholar 

  40. Ehsani, A.; Mahjani, M.G.; Moshrefi, R.; Mostaanzadeh, H.; Shayeh, J.S.: Electrochemical and DFT study on the inhibition of 316L stainless steel corrosion in acidic medium by 1-(4-nitrophenyl)-5-amino-1 H-tetrazole. RSC Adv. 4(38), 20031–20037 (2014)

    Article  Google Scholar 

  41. Ehsani, A.; Mahjani, M.G.; Hosseini, M.; Safari, R.; Moshrefi, R.; Shiri, H.M.: Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory. J. Colloid Interface Sci. 490, 444–451 (2017)

    Article  Google Scholar 

  42. Ech-chihbi, E.; Nahlé, A.; Salim, R.; Benhiba, F.; Moussaif, A.; El-Hajjaji, F.; Oudda, H.; Guenbour, A.; Taleb, M.; Warad, I.; Zarrouk, A.: Computational, MD simulation, SEM/EDX and experimental studies for understanding adsorption of benzimidazole derivatives as corrosion inhibitors in 1.0M HCl solution. J. Alloys Compd. 844, 155842 (2020)

    Article  Google Scholar 

  43. Saady, A.; Ech-chihbi, E.; El-Hajjaji, F.; Benhiba, F.; Zarrouk, A.; Kandri Rodi, Y.; Taleb, M.; El Biache, A.; Rais, Z.: Molecular dynamics, DFT and electrochemical to study the interfacial adsorption behavior of new imidazo[4,5-b] pyridine derivative as corrosion inhibitor in acid medium. J. Appl. Electrochem. 51(2), 245–265 (2020)

    Article  Google Scholar 

  44. Nahlé, A.; Salim, R.; El Hajjaji, F.; Aouad, M.R.; Messali, M.; Ech-chihbi, E.; Hammouti, B.; Taleb, M.: Novel triazole derivatives as ecological corrosion inhibitors for mild steel in 1.0 M HCl: experimental and theoretical approach. RSC Adv. 11(7), 4147–4162 (2021)

    Article  Google Scholar 

  45. Hmamou, D.B.; Salghi, R.; Zarrouk, A.; Zarrok, H.; Touzani, R.; Hammouti, B.; El Assyry, A.: Investigation of corrosion inhibition of carbon steel in 0.5 M H2SO4 by new bipyrazole derivative using experimental and theoretical approaches. J. Environ. Chem. Eng. 3(3), 2031–41 (2015)

    Article  Google Scholar 

  46. Lin, B.; Tang, J.; Wang, Y.; Wang, H.; Zuo, Y.: Study on synergistic corrosion inhibition effect between calcium lignosulfonate (CLS) and inorganic inhibitors on Q235 carbon steel in alkaline environment with Cl−. Molecules 25(18), 4200 (2020)

    Article  Google Scholar 

  47. Ech-chihbi, E.; Nahlé, A.; Salim, R.; Oudda, H.; El Hajjaji, F.; El Kalai, F.; El Aatiaoui, A.; Taleb, M.: An investigation into quantum chemistry and experimental evaluation of imidazopyridine derivatives as corrosion inhibitors for C-steel in acidic media. J. Bio Tribo Corros. 5(1), 24 (2019)

    Article  Google Scholar 

  48. Ouici, H.; Tourabi, M.; Benali, O.; Selles, C.; Jama, C.; Zarrouk, A.; Bentiss, F.: Adsorption and corrosion inhibition properties of 5-amino 1, 3, 4-thiadiazole-2-thiol on the mild steel in hydrochloric acid medium: thermodynamic, surface and electrochemical studies. J. Electroanal. Chem. 803, 125–134 (2017)

    Article  Google Scholar 

  49. Barreca, D.; Gasparotto, A.; Milanov, A.; Tondello, E.; Devi, A.; Fischer, R.A.: Nanostructured Dy2O3 films: an XPS investigation. Suf. Sci. 14, 52–59 (2007)

    Google Scholar 

  50. Zorn, G.; Liu, L.H.; Arnadóttir, L.; Wang, H.; Gamble, L.J.; Castner, D.G.; Yan, M.: X-ray photoelectron spectroscopy investigation of the nitrogen species in photoactive perfluorophenylazide-modified surfaces. J. Phys. Chem. C 118, 376–383 (2007)

    Article  Google Scholar 

  51. Ristić, M.; Musić, S.; Godec, M.: Properties of γ-FeOOH, α-FeOOH and α-Fe2O3 particles precipitated by hydrolysis of Fe3+ ions in perchlorate containing aqueous solutions. J. Alloys Compd. 417, 292–299 (2006)

    Article  Google Scholar 

  52. Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D.: Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer Corp, Eden Prairie (1992)

    Google Scholar 

  53. Hamani, H.; Douadi, T.; Daoud, D.; Al-Noaimi, M.; Rikkouh, R.A.; Chafaa, S.: 1-(4-Nitrophenylo-imino)-1-(phenylhydrazono)-propan-2-one as corrosion inhibitor for mild steel in 1 M HCl solution: weight loss, electrochemical, thermodynamic and quantum chemical studies. J. Electroanal. Chem. 801, 425–438 (2017)

    Article  Google Scholar 

  54. Visa, A.; Plesu, N.; Maranescu, B.; Ilia, G.; Borota, A.; Crisan, L.: Combined experimental and theoretical insights into the corrosion inhibition activity on carbon steel iron of phosphonic acids. Molecules 26(1), 135 (2021)

    Article  Google Scholar 

  55. Kaya, S.; Kaya, C.; Islam, N.: Maximum hardness and minimum polarizability principles through lattice energies of ionic compounds. Physica B 485, 60–66 (2016)

    Article  Google Scholar 

  56. Paul, P.K.; Yadav, M.: Investigation on corrosion inhibition and adsorption mechanism of triazine-thiourea derivatives at mild steel/HCl solution interface: electrochemical, XPS DFT and Monte Carlo simulation approach. J. Electroanal. Chem. 877, 114599 (2020)

    Article  Google Scholar 

  57. Salim, R.; Nahlé, A.; El-Hajjaji, F.; Ech-chihbi, E.; Benhiba, F.; El Kalai, F.; Benchat, N.; Oudda, H.; Guenbour, A.; Taleb, M.; Warad, I.; Zarrouk, A.: Experimental, density functional theory and dynamic molecular studies of imidazopyridine derivatives as corrosion inhibitors for mild steel in hydrochloric acid. Surf. Eng. Appl. Electrochem. 57(2), 233–254 (2021)

    Article  Google Scholar 

  58. Al-Ghouti, A.M.; Daana, D.A.: Guidelines for the use and interpretation of adsorption isotherm models: a review. J. Hazard. Mater. 393, 122383 (2020)

    Article  Google Scholar 

  59. Naciri, M.; El Aoufir, Y.; Lgaz, H.; Lazrak, F.; Ghanimi, A.; Guenbour, A.; Ali, H.; El Moudane, M.; Taoufik, J.; Chung, I.M.: Exploring the potential of a new 1,2,4-triazole derivative for corrosion protection of carbon steel in HCl: a computational and experimental evaluation. Colloids Surf. A Physicochem. Eng. Aspects 597, 124604 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We also thank Engineering Laboratory of Organometallic, Molecular Materials, and Environment, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University for supporting this project. Thanks also to any structure that contributed to the realization of this work thanks to their feedback and testimonies. The present work has been supported by the Spanish Ministerio de Economía, Industria y Competividad (RTI2018-099668-BC22).

Funding

There is no funding to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shehdeh Jodeh or Manuel Algarra.

Ethics declarations

Conflict of interest

No author declares any conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Hajjaji, F., Salim, R., Messali, M. et al. Insights of Corrosion Inhibitor Based in Pyridinium Ionic Liquids. Arab J Sci Eng 48, 7755–7770 (2023). https://doi.org/10.1007/s13369-022-07502-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07502-0

Keywords

Navigation