Skip to main content
Log in

A Comparative Study for Solidification of Nanoparticles Suspended in Nanofluids through Non-Local Kernel Approach

  • Research Article-mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The nanoparticles reduce heat dissipation during the solidification and combustion process, this is because the dispersion of nanoparticles accelerates the solidification processes. In this paper, the comparative study of an unsteady free convection MHD flow of nanofluids through an accelerated long vertical plate placed in a porous medium with embedded nanoparticles is proposed for solidification trends. The flow is confined to a moving plate under the inclined magnetic field and affected by chemical reactions, Newtonian heating, and thermal radiation. The governing equations for concentration, temperature, and velocity are reduced in dimensionless and fractionalized with innovative fractional derivatives of Caputo-Fabrizio and Atangana-Baleanu. The Laplace transform is employed on governing equations based on water as base fluid with nanoparticles. The numerical inversion technique, namely the Zakian method, is used. The results suggest the decaying behavior of velocity and temperature with both fractional models based on the memory of the flow at a specific time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32

Data Availability Statement

The data that support the findings of this study are publicly available and the corresponding author can provide upon request.

Abbreviations

\({w}^{^{\prime}}\) :

Velocity field [\(m{s}^{-1}\)]

\(g\) :

Gravitational acceleration [\(m{s}^{-2}\)]

\({\beta }_{T}\) :

Volumetric coefficient of thermal extension [\({K}^{-1}\)]

\({T}^{^{\prime}}\) :

Temperature [\(K\)]

\({T}_{\infty }^{^{\prime}}\) :

Fluid temperature away from the plate [\(K\)]

\({T}_{w}\) :

The temperature of the fluid at the plate [\(K\)]

\({C}^{^{\prime}}\) :

The concentration of the fluid [\(kg{m}^{-3}\)]

\({C}_{\infty }^{^{\prime}}\) :

Fluid concentration away from the plate [\(kg{m}^{-3}]\)

\({C}_{w}\) :

The concentration of the fluid at the plate, \(\left(y=0\right)\) [\(kg{m}^{-3}]\)

\({C}_{P}\) :

Specific heat at constant pressure [\(J{Kg}^{-1}{K}^{-1}\)]

\(\mu \) :

Dynamic viscosity [\(Kg{m}^{-1}{s}^{-1}\)]

\(R\) :

Radiation parameter

\(\upsilon \) :

Kinematic viscosity [\({m}^{2}{s}^{-1}\)]

\(\rho \) :

The density of fluid [\(Kg{m}^{-3}\)]

\(D\) :

Mass diffusion coefficient [\({m}^{2}{s}^{-1}\)]

\(\tau \) :

Shear stress

\({B}_{0}\) :

Magnetic fluid parameter

\(Gr\) :

Thermal Grashof number

\(Gm\) :

Mass Grashof number

\(Pr\) :

Prandtl number

\(Sc\) :

Schmidt number

\(\sigma \) :

Electrical conductivity of the fluid

\({q}_{r}\) :

Thermal flux

\({S}_{1}\) :

Dimensionless heat absorption or generation coefficient

\({\lambda }_{1}\) :

Chemical reaction parameter

\(M\) :

Magnetic parameter

\({\mu }_{nf}\) :

Dynamic viscosity of nanofluid

\({\rho }_{nf}\) :

Density of nanofluid

\({K}_{nf}\) :

Thermal conductivity of nanofluid

\({\sigma }_{nf}\) :

Electrical conductivity of nanofluid

\({\left(\rho {C}_{P}\right)}_{nf}\) :

Heat capacity of nanofluid

\(\varphi \) :

The volume fraction of nanofluid

CF:

Caputo-Fabrizio time-fractional derivative

AB:

Atangana-Baleanu time-fractional derivative

NFs:

Nanofluids

HNFs:

Hybrid nanofluids

\(\left(\mathrm{\alpha },\upbeta ,\upgamma \right)\) :

Fractional parameters

MHD:

Magnetohydrodynamics

\({\sigma }^{*}\) :

Stephan Boltzmann's constant

\({\kappa }^{*}\) :

The mean absorption coefficient

q :

Laplace transform variable

References

  1. Aleem, M.; Asjad, M.I.; Shaheen, A.; Khan, I.: MHD Influence on different water-based nanofluids (TiO2, Al2O3, CuO) in a porous medium with chemical reaction and Newtonian heating. Chaos Soliton Fractal 130, 109437 (2020)

    Article  MATH  Google Scholar 

  2. Wu, C.C.; Tom, C.: Further study of the dynamics of two-dimensional MHD coherent structures—a large-scale simulation. J. Atmos. Sol. Terr. Phys. 63(13), 1447–1453 (2001)

    Article  Google Scholar 

  3. Zhang, C.; Zheng, L.; Zhang, X.; Chen, G.: MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction. Appl. Math. Model. 39(1), 165–181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Awan, A.U.; Nehad Ali, S.; Najma, A.; Qasim, A.; Riaz, S.: Analysis of free convection flow of viscous fluid with damped thermal and mass fluxes. Chin. J. Phys. 60, 98–106 (2019)

    Article  MathSciNet  Google Scholar 

  5. Ali, Q.; Riaz, S.; Awan, A.U.; Abro, K.A.: Thermal investigation for electrified convection flow of Newtonian fluid subjected to damped thermal flux on a permeable medium. Phys. Scr. 95(11), 115003 (2020)

    Article  Google Scholar 

  6. Awan, A.U.; Ali, Q.; Riaz, S.; Shah, N.A.; Chung, J.D.: A thermal optimization throughan innovative mechanism of free convection flow of Jeffrey fluid using non-local kernel. Case Stud. Therm. Eng. 24, 100851 (2021)

    Article  Google Scholar 

  7. Choi, S.U.S.; Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles. Argonne, Argonne National Lab (ANL) (1995)

    Google Scholar 

  8. Das, S.K.; Choi, S.U.; Wenhua, Yu.; Pradeep, T.: Nanofluids: science and technology. John Wiley & Sons, New York (2007)

    Book  Google Scholar 

  9. Wang, X.-Q.; Mujumdar, A.S.: Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46(1), 1–19 (2007)

    Article  Google Scholar 

  10. Wang, X.-Q.; Mujumdar, A.S.: A review on nanofluids-part I: theoretical and numerical investigations. Braz. J. Chem. Eng. 25, 613–630 (2008)

    Article  Google Scholar 

  11. Wang, X.-Q.; Mujumdar, A.S.: A review on nanofluids-part II: experiments and applications. Braz. J. Chem. Eng. 25, 631–648 (2008)

    Article  Google Scholar 

  12. Kakaç, S.; Pramuanjaroenkij, A.: Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52(13–14), 3187–3196 (2009)

    Article  MATH  Google Scholar 

  13. Khanafer, K.; Vafai, K.: A critical synthesis of thermophysical characteristics of nanofluids. Int. J. Heat Mass Transf. 54(19–20), 4410–4428 (2011)

    Article  MATH  Google Scholar 

  14. Abro, K.A.; Khan, I.; Gomez-Aguilar, J.F.: Heat transfer in magnetohydrodynamic free convection flow of generalized ferrofluid with magnetite nanoparticles. J. Therm. Anal. Calorim. 143, 3633–3642 (2021)

    Article  Google Scholar 

  15. Wang, J.; Yi-Peng, X.; Raed, Q.; Jafaryar, M.; Mashhour, A.A.; Abu-Hamdeh, N.H.; Alibek, I.; Mahmoud, M.S.: Simulation of hybrid nanofluid flow within a microchannel heat sink considering porous media analyzing CPU stability. J. Pet. Sci. Eng. 208, 109734 (2022)

    Article  Google Scholar 

  16. Roy, N.C.; Pop, I.: Flow and heat transfer of a second-grade hybrid nanofluid over a permeable stretching/shrinking sheet. Eur. Phys. J. Plus 135(9), 768 (2020)

    Article  Google Scholar 

  17. Roy, N.C.; Pop, I.: Exact solutions of Stokes’ second problem for hybrid nanofluid flow with a heat source. Phys. Fluid 33(6), 063603 (2021)

    Article  Google Scholar 

  18. Roy, N.C.; Pop, I.: Analytical investigation of transient free convection and heat transfer of a hybrid nanofluid between two vertical parallel plates. Phys. Fluid 34(7), 072005 (2022)

    Article  Google Scholar 

  19. Roy, N.C.; Ghosh, A.: Magnetohydrodynamic natural convection of second-grade hybrid nanofluid on variable heat flux surface. AIP Adv 12(3), 035243 (2022)

    Article  Google Scholar 

  20. Roy, N.C.; Pop, I.: Unsteady magnetohydrodynamic stagnation point flow of a nanofluid past a permeable shrinking sheet. Chin. J. Phys. 75, 109–119 (2022)

    Article  MathSciNet  Google Scholar 

  21. Sheikholeslami, M.; Ganji, D.D.: Heat transfer of Cu-water nanofluid flow between parallel plates. Powder Technol. 235, 873–879 (2013)

    Article  Google Scholar 

  22. Loganathan, P.; Nirmal-Chand, P.; Ganesan, P.: Radiation effects on an unsteady natural convective flow of a nanofluid past an infinite vertical plate. NANO 8(1), 1350001 (2013)

    Article  Google Scholar 

  23. Khalid, A.; Khan, I.; Shafie, S.: Exact solutions for free convection flow of nanofluids with ramped wall temperature. Eur. Phys. J. Plus 130(4), 1–14 (2015)

    Article  Google Scholar 

  24. Azhar, W.A.; Vieru, D.; Fetecau, C.: Free convection flow of some fractional nanofluids over a moving vertical plate with uniform heat flux and heat source. Phys. Fluid 29(8), 082001 (2017)

    Article  Google Scholar 

  25. Fetecau, C.; Vieru, D.; Azhar, W.A.: Natural convection flow of fractional nanofluids over an isothermal vertical plate with thermal radiation. Appl. Sci. 7(3), 247 (2017)

    Article  Google Scholar 

  26. Sheikh, N.A.; Ching, D.L.C.; Khan, I.; Kumar, D.; Kottakkaran, S.N.: A new model of fractional Casson fluid based on generalized Fick’s and Fourier’s laws together with heat and mass transfer. Alex. Eng. J. 59(5), 2865–2876 (2020)

    Article  Google Scholar 

  27. Almani, S.; Qureshi, K.; Abro, K.A.; Abro, M.; Unar, I.N.: Parametric study of adsorption column for arsenic removal on the basis of numerical simulations. Wave Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2122630

    Article  Google Scholar 

  28. Souayeh, B.; Abro, K.A.; Siyal, A.; Hdhiri, N.; Hammami, F.; Al-Shaeli, M.; Alnaim, N.; Kumar-Raju, S.S.; Alam, M.W.; Alsheddi, T.: Role of copper and alumina for heat transfer in hybrid nanofluid by using Fourier sine transform. Sci. Rep. 12, 11307 (2022). https://doi.org/10.1038/s41598-022-14936-x

    Article  Google Scholar 

  29. Qasim, A.; Mansour, F.Y.; Saeed, A.A.; Amjad, A.P.; Kashif, A.A.: Role of viscoelasticity on thermo-electromechanical system subjected to annular regions of cylinders in the existence of a uniform inclined magnetic field. Eur. Phys. J. Plus 137, 770 (2022). https://doi.org/10.1140/epjp/s13360-022-02951-w

    Article  Google Scholar 

  30. Abro, K.A.; Atangana, A.; Gómez-Aguilar, J.F.: Chaos control and characterization of brushless DC motor via integral and differential fractal-fractional techniques. Int. J. Model. Simul. (2022). https://doi.org/10.1080/02286203.2022.2086743

    Article  Google Scholar 

  31. Riaz, S.; Sattar, M.: Kashif Ali Abro, Qasim Ali, Thermo-dynamical investigation of constitutive equation for rate type fluid: a semi-analytical approach. Int. J. Model. Simul. (2022). https://doi.org/10.1080/02286203.2022.2056427

    Article  Google Scholar 

  32. Abro, K.A.; Atangana, A.; Memon, I.Q.: Comparative analysis of statistical and fractional approaches for thermal conductance through suspension of ethylene glycol nanofluid. Braz. J. Phys. (2022). https://doi.org/10.1007/s13538-022-01115-6

    Article  Google Scholar 

  33. Panhwer, L.A.; Abro, K.A.; Memon, I.Q.: Thermal deformity and thermolysis of magnetized and fractional Newtonian fluid with rheological investigation. Phys. Fluid (2022). https://doi.org/10.1063/5.0093699

    Article  Google Scholar 

  34. Souayeh, B.; Abro, K.A.; Alfannakh, H.; Nuwairan, M.A.; Yasin, A.: Application of fourier sine transform to carbon nanotubes suspended in ethylene glycol for the enhancement of heat transfer. Energies 15, 1200 (2022). https://doi.org/10.3390/en15031200

    Article  Google Scholar 

  35. Abro, K.A.; Souayeh, B.; Malik, K.; Atangana, A.: Chaotic characteristics of thermal convection at smaller verse larger Prandtl number through fractal and fractional differential operators from nanofluid. Int. J. Model. Simul. (2022). https://doi.org/10.1080/02286203.2021.2018261

    Article  Google Scholar 

  36. Abro, K.A.; Atangana, A.; Gomez-Aguilar, J.F.: Ferromagnetic chaos in thermal convection of fluid through fractal–fractional differentiations. J. Therm. Anal. Calorim. (2022). https://doi.org/10.1007/s10973-021-11179-2

    Article  Google Scholar 

  37. Souayeh, B.; Abro, K.A.: Thermal characteristics of longitudinal fin with Fourier and non-Fourier heat transfer by Fourier sine transforms. Sci. Rep. 11, 20993 (2021). https://doi.org/10.1038/s41598-021-00318-2

    Article  Google Scholar 

  38. Abro, K.A.; Atangana, A.; Gomez-Aguilar, J.F.: An analytic study of bioheat transfer Pennes model via modern non-integers differential techniques. Eur. Phys. J. Plus 136, 1144 (2021). https://doi.org/10.1140/epjp/s13360-021-02136-x

    Article  Google Scholar 

  39. Ahmed, N.; Vieru, D.; Fetecau, C.; Shah, N.A.: Convective flows of generalized time-nonlocal nanofluids through a vertical rectangular channel. Phys. Fluid 30(5), 052002 (2018)

    Article  Google Scholar 

  40. Brewster, M.Q.: Thermal Radiative Transfer and Properties. Wiley, New York (1992)

    Google Scholar 

  41. Caputo, M.; Fabrizio, M.: A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 1(2), 73–85 (2015)

    Google Scholar 

  42. Abro, K.A.; Gomez-Aguilar, J.F.: Fractional modeling of fin on non-Fourier heat conduction via modern fractional differential operators. Arab. J. Sci. Eng. 46(3), 2901–2910 (2021)

    Article  Google Scholar 

  43. Atangana A, and D Baleanu. "New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model." arXiv preprint arXiv:1602.03408 (2016).

  44. Riaz, M.B.; Iftikhar, N.: A comparative study of heat transfer analysis of MHD Maxwell fluid in view of local and nonlocal differential operators. Chaos Soliton Fractal 132, 109556 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  45. Halsted, D.J.; Brown, D.E.: Zakian’s technique for inverting laplace transforms. Chem. Eng. J. 3, 312–313 (1972)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Kashif Ali Abro is highly thankful and grateful to Mehran University of Engineering and Technology, Jamshoro, Pakistan, for generous support and facilities of this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashif Ali Abro.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, S., Amir, M., Memon, I.Q. et al. A Comparative Study for Solidification of Nanoparticles Suspended in Nanofluids through Non-Local Kernel Approach. Arab J Sci Eng 48, 11645–11663 (2023). https://doi.org/10.1007/s13369-022-07493-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07493-y

Keywords

Navigation