Skip to main content

Advertisement

Log in

Bubble Column Dehumidification for Sweeping Air Membrane Distillation

  • Research Article-mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The performance of a novel integrated desalination system of sweeping gas membrane distillation (SGMD) module and a bubble column dehumidifier (BCD) was experimentally investigated to enhance freshwater productivity and reduce energy consumption of the system. The SGMD module acts as a humidifier by separating water vapor into the sweeping air channel to deliver humid air to the bubble column dehumidifier. The sweeping air stream was created using a vacuum pump between the SGMD module and the BCD. To evaluate the system performance, different operating conditions were tested for closed and open sweeping air cycles and with different cooling methods. Results showed a marginal enhancement of 7 to 10% in productivity and 10 to 20% in the system’s gained output ratio when the closed-air cycle was used compared to the open-air cycle. Feed temperature and flow rate and sweeping air flow rate mainly control the system’s performance, while the water column height in dehumidifier and its temperature have moderate impacts. In addition, both air cooling and no cooling modes of operation showed promising results regarding energy efficiency, especially with elevated dehumidifier water column heights between 6 and 9 cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Solomon, S.; Plattner, G.K.; Knutti, R.; Friedlingstein, P.: Irreversible climate change due to carbon dioxide emissions. Proc. Natl. Acad. Sci. U. S. A. 106(6), 1704–1709 (2009). https://doi.org/10.1073/pnas.0812721106

    Article  Google Scholar 

  2. Betti, M.; Vignoli, A.: Modelling and analysis of a Romanesque church under earthquake loading: assessment of seismic resistance. Eng. Struct. (2008). https://doi.org/10.1016/j.engstruct.2007.03.027

    Article  Google Scholar 

  3. Lawson, K.W.; Lloyd, D.R.: Membrane distillation. J. Memb. Sci. 124(1), 1–25 (1997). https://doi.org/10.1016/S0376-7388(96)00236-0

    Article  Google Scholar 

  4. Wang, Z.; Ma, J.; Tang, C.Y.; Kimura, K.; Wang, Q.; Han, X.: Membrane cleaning in membrane bioreactors: a review. J. Membr. Sci. (2014). https://doi.org/10.1016/j.memsci.2014.05.060

    Article  Google Scholar 

  5. Shirazi, M.M.A.; Bastani, D.; Kargari, A.; Tabatabaei, M.: Characterization of polymeric membranes for membrane distillation using atomic force microscopy. Desalin. Water Treat. 51(31–33), 6003–6008 (2013). https://doi.org/10.1080/19443994.2013.765365

    Article  Google Scholar 

  6. Khayet, M.: Membrane distillation. In: Li, N.N.; Fane, A.G.; Winston Ho, W.S.; Matsuura, T. (Eds.) Advanced Membrane Technology and Applications. Wiley, New York (2008)

    Google Scholar 

  7. Criscuoli, A.; Carnevale, M.C.; Drioli, E.: Evaluation of energy requirements in membrane distillation. Chem. Eng. Process. Process Intensif. 47(7), 1098–1105 (2008). https://doi.org/10.1016/j.cep.2007.03.006

    Article  Google Scholar 

  8. Alkhudhiri, A.; Darwish, N.; Hilal, N.: Membrane distillation: A comprehensive review. Desalination 287, 2–18 (2012). https://doi.org/10.1016/j.desal.2011.08.027

    Article  Google Scholar 

  9. Kebria, M.; Rahimpour, A.: Advances in Membrane Technologies. IntechOpen, London (2020)

    Google Scholar 

  10. Abdallah, I.; Wang, S.; Li, Q.: Field demonstration of a nanophotonics enabled solar membrane distillation reactor for desalination. Ind. Eng. Chem. Res. (2019). https://doi.org/10.1021/acs.iecr.9b03246

    Article  Google Scholar 

  11. M. Khayet and T. Matsuura, “Chapter 11 - Sweeping Gas Membrane Distillation,” M. Khayet and T. B. T.-M. D. Matsuura, Eds. Amsterdam: Elsevier, 2011, pp. 295–322

  12. Tow, E.W.; Lienhard, J.H.V.: Experiments and modeling of bubble column dehumidifier performance. Int. J. Therm. Sci. 80(1), 65–75 (2014). https://doi.org/10.1016/j.ijthermalsci.2014.01.018

    Article  Google Scholar 

  13. Khedr, M.: Techno-Economic investigation of an air humidification-dehumidification desalination process. Chem. Eng. Technol. 16(4), 270–274 (1993). https://doi.org/10.1002/ceat.270160410

    Article  Google Scholar 

  14. Rajaseenivasan, T.; Shanmugam, R.K.; Hareesh, V.M.; Srithar, K.: Combined probation of bubble column humidification dehumidification desalination system using solar collectors. Energy 116, 459–469 (2016). https://doi.org/10.1016/j.energy.2016.09.127

    Article  Google Scholar 

  15. Rajaseenivasan, T.; Srithar, K.: An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy. Energy Convers. Manag. 139, 232–244 (2017). https://doi.org/10.1016/j.enconman.2017.02.043

    Article  Google Scholar 

  16. Abdelkader, B.A.; Khan, M.; Antar, M.A.; Khalifa, A.E.: Performance of bubble column humidification-dehumidification (Hdh) desalination system. Desalin. Water Treat. 181(September), 101–112 (2020). https://doi.org/10.5004/dwt.2020.25105

    Article  Google Scholar 

  17. Sharqawy, M.H.; Liu, H.: The effect of pressure on the performance of bubble column dehumidifier. Int. J. Heat Mass Transf. 87, 212–221 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.03.088

    Article  Google Scholar 

  18. Tow, E.W., Lienhard, J.H.: Heat flux and effectiveness in bubble column dehumidifiers for HDH desalination, IDA World Congr. Desalin. Water Reuse, p. 14, 2013

  19. Animasaun, I.L.; Ibraheem, R.O.; Mahanthesh, B.; Babatunde, H.A.: A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids. Chin. J. Phys. 60(June), 676–687 (2019). https://doi.org/10.1016/j.cjph.2019.06.007

    Article  MathSciNet  Google Scholar 

  20. Shah, N.A.; Animasaun, I.L.; Ibraheem, R.O.; Babatunde, H.A.; Sandeep, N.; Pop, I.: Scrutinization of the effects of Grashof number on the flow of different fluids driven by convection over various surfaces. J. Mol. Liq. 249, 980–990 (2018). https://doi.org/10.1016/j.molliq.2017.11.042

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the support and funding provided by the Deanship of Research at King Fahd University of Petroleum and Minerals (KFUPM) through Research Grants no DF191003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atia E. Khalifa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussein, A., Alawad, S.M. & Khalifa, A.E. Bubble Column Dehumidification for Sweeping Air Membrane Distillation. Arab J Sci Eng 48, 11537–11544 (2023). https://doi.org/10.1007/s13369-022-07481-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07481-2

Keywords

Navigation