Skip to main content
Log in

E2RGWO: Exploration Enhanced Robotic GWO for Cooperative Multiple Target Search for Robotic Swarms

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Grey Wolf Optimizer (GWO) is a novel population-based optimization algorithm. It has become quite popular among researchers in the robotic domain recently. Target searching is an application of robotics. This paper proposes an exploration enhanced robotic grey wolf optimizer (E2RGWO) algorithm based on Robotic Grey Wolf Optimizer for swarm-based target searching in an unknown environment. The position update equation is discussed using a random individual from the population, which guides the search to enhance the exploration of the grey wolf. It also uses nonlinear control of parameter \(\vec {a}\) to balance the exploration and exploitation, making it suitable for multi-target search applications. It also uses an adaptive inertia weight coefficient depending on the aggregation degree and evolutionary speed to enhance exploration and improves diversity. The comparison with the existing methodology for target search shows that the E2RGWO algorithm significantly improves the detection rate and search latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Yang, J.; Wang, X.; Bauer, P.: Line and V-shape formation based distributed processing for robotic swarms. Sensors 18(8), 2543 (2018)

    Article  Google Scholar 

  2. Bakhshipour, M.; Ghadi, M.J.; Namdari, F.: Swarm robotics search & rescue: a novel artificial intelligence-inspired optimization approach. Appl. Soft Comput. 57, 708–726 (2017)

    Article  Google Scholar 

  3. Alonso-Mora, J.; Baker, S.; Rus, D.: Multi-robot formation control and object transport in dynamic environments via constrained optimization. Int. J. Robot. Res. 36(9), 1000–1021 (2017)

    Article  Google Scholar 

  4. Kumar, R.; Singh, L.; Tiwari, R.: Path planning for the autonomous robots using modified grey wolf optimization approach. J. Intell. Fuzzy Syst. 02(40), 9453–9470 (2021). https://doi.org/10.3233/JIFS-201926

    Article  Google Scholar 

  5. Doǧan, L.; Yüzgeç, U.: Robot Path Planning using Gray Wolf Optimizer (2018)

  6. Fei, W.; Ziwei, W.; Meijin, L.: Robot path planning based on improved particle swarm optimization. In: 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE), pp. 887–891. IEEE (2021)

  7. Mamduh, S.; Kamarudin, K.; Shakaff, A.; Zakaria, A.; Visvanathan, R.; Yeon, A.; et al.: Gas source localization using grey wolf optimizer. J. Telecommun., Electron. Comput. Eng. (JTEC) 10(1–13), 95–98 (2018)

    Google Scholar 

  8. Dewangan, R.; Shukla, A.; Godfrey, W.: Three dimensional path planning using Grey wolf optimizer for UAVs. Appl. Intell. 06, 49 (2019). https://doi.org/10.1007/s10489-018-1384-y

    Article  Google Scholar 

  9. Senanayake, M.; Senthooran, I.; Barca, J.C.; Chung, H.; Kamruzzaman, J.; Murshed, M.: Search and tracking algorithms for swarms of robots: a survey. Robot. Auton. Syst. 75, 422–434 (2016)

    Article  Google Scholar 

  10. Mirjalili, S.; Mirjalili, S.M.; Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  11. Hereford, J.M.: A distributed particle swarm optimization algorithm for swarm robotic applications. In: 2006 IEEE International Conference on Evolutionary Computation, pp. 1678–1685. IEEE (2006)

  12. Zhang, J.; Gong, D.; Zhang, Y.: A niching PSO-based multi-robot cooperation method for localizing odor sources. Neurocomputing 123, 308–317 (2014)

    Article  Google Scholar 

  13. Senthilkumar, K.; Bharadwaj, K.K.: Multi-robot exploration and terrain coverage in an unknown environment. Robot. Auton. Syst. 60(1), 123–132 (2012)

    Article  Google Scholar 

  14. Brass, P.; Cabrera-Mora, F.; Gasparri, A.; Xiao, J.: Multirobot tree and graph exploration. IEEE Trans. Robot. 27(4), 707–717 (2011)

    Article  Google Scholar 

  15. Ataei, H.N.; Ziarati, K.; Eghtesad, M.: A BSO-based algorithm for multi-robot and multi-target search. In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 312–321. Springer (2013)

  16. Dadgar, M.; Jafari, S.; Hamzeh, A.: A PSO-based multi-robot cooperation method for target searching in unknown environments. Neurocomputing 177, 62–74 (2016)

    Article  Google Scholar 

  17. Cai, Y.; Yang, S.X.: An improved PSO-based approach with dynamic parameter tuning for cooperative multi-robot target searching in complex unknown environments. Int. J. Control 86(10), 1720–1732 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cai, Y.; Yang, S.X.: A PSO-based approach with fuzzy obstacle avoidance for cooperative multi-robots in unknown environments. Int. J. Comput. Intell. Appl. 15(01), 1650001 (2016)

    Article  Google Scholar 

  19. Li, J.; Li, M.; Li, Y.; Dou, L.; Wang, Z.: Coordinated multi-robot target hunting based on extended cooperative game. In: 2015 IEEE International Conference on Information and Automation, pp. 216–221. IEEE (2015)

  20. Liang, Z.; Wei, Y.: Research on self-organizing target hunting for mobile robot group. In: 2018 IEEE 4th International Conference on Control Science and Systems Engineering (ICCSSE), pp. 67–70. IEEE (2018)

  21. Cao, X.; Sun, C.: A potential field-based PSO approach to multi-robot cooperation for target search and hunting. at-Automatisierungstechnik 65(12), 878–887 (2017)

    Article  Google Scholar 

  22. Hamed, O.; Hamlich, M.: Improvised multi-robot cooperation strategy for hunting a dynamic target. EAI Endorsed Trans. Internet Things 6(24), e5 (2020)

    Google Scholar 

  23. Du, Y.: A novel approach for swarm robotic target searches based on the DPSO algorithm. IEEE Access 8, 226484–226505 (2020)

    Article  Google Scholar 

  24. Sánchez-García, J.; Reina, D.; Toral, S.: A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Futur. Gener. Comput. Syst. 90, 129–148 (2019)

    Article  Google Scholar 

  25. Garg, V.; Tiwari, R.; Shukla, A.; Dhar, J.: A distributed cooperative approach for dynamic target search using particle swarm optimization with limited intercommunication. Arab. J. Sci. Eng. 47, 10623–10637 (2022)

  26. Phung, M.D.; Ha, Q.P.: Motion-encoded particle swarm optimization for moving target search using UAVs. Appl. Soft Comput. 97, 106705 (2020)

    Article  Google Scholar 

  27. Panigrahi, P.K.; Bisoy, S.K.: Localization strategies for autonomous mobile robots: a review. J. King Saud Univer.-Comput. Inf. Sci. 34(8), 6019–6039 (2021)

  28. Garg, V.: Cooperative multi-robot target searching and tracking using velocity inspired robotic fruit fly algorithm. SN Comput. Sci. 2(6), 1–12 (2021)

    Article  Google Scholar 

  29. Tang, H.; Sun, W.; Lin, A.; Xue, M.; Zhang, X.: A GWO-based multi-robot cooperation method for target searching in unknown environments. Expert Syst. Appl. 186, 115795 (2021)

    Article  Google Scholar 

  30. Mittal, N.; Singh, U.; Sohi, B.S.: Modified grey wolf optimizer for global engineering optimization. Appl. Comput. Intell. Soft Comput. 2016, 1–16 (2016)

  31. Shen, Y.; Yang, J.; Cheng, S.; Shi, Y.: BSO-AL: brain storm optimization algorithm with adaptive learning strategy. In: IEEE Congress on Evolutionary Computation (CEC), vol. 2020, pp.1–7. IEEE (2020)

  32. Garg, V.; Shukla, A.; Tiwari, R.: AERPSO-an adaptive exploration robotic PSO based cooperative algorithm for multiple target searching. Expert Syst. Appl. 209, 118245 (2022)

    Article  Google Scholar 

  33. Yang, J.; Xiong, R.; Xiang, X.; Shi, Y.: Exploration enhanced RPSO for collaborative multitarget searching of robotic swarms. Complexity. 2020, 1–12 (2020)

  34. Tang, H.; Sun, W.; Yu, H.; Lin, A.; Xue, M.: A multirobot target searching method based on bat algorithm in unknown environments. Expert Syst. Appl. 141, 112945 (2020)

    Article  Google Scholar 

  35. Tang, H.; Sun, W.; Yu, H.; Lin, A.; Xue, M.; Song, Y.: A novel hybrid algorithm based on PSO and FOA for target searching in unknown environments. Appl. Intell. 49(7), 2603–2622 (2019)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Vikram Garg was involved in conceptualization of this study, methodology, software, writing—original draft preparation.

Corresponding author

Correspondence to Vikram Garg.

Ethics declarations

Conflict of interest

The author declares that he has no competing interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, V. E2RGWO: Exploration Enhanced Robotic GWO for Cooperative Multiple Target Search for Robotic Swarms. Arab J Sci Eng 48, 9887–9903 (2023). https://doi.org/10.1007/s13369-022-07438-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07438-5

Keywords

Navigation