Skip to main content
Log in

Analysis of Breakthrough Curve Performance Using Theoretical and Empirical Models: Hg2+ Removal by Bone Char from Synthetic and Real Water

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Bone char has been successfully prepared from ostrich bone waste (OBC) via the physical activation under the presents of N2 gas and then was characterized by different techniques. The utility of the mass transport (MT) model to simulate the breakthrough curves of mercury(II) in a packed-bed adsorption column was evaluated and compared with the mathematical models (Bed Depth Service Time (BDST), Adams–Bohart (AB), Thomas, Dose–Response (DR), and Yoon–Nelson (YN)) under diverse operating factors such as influent concentration (35, 75, and 150 mg L−1), inlet flow rate (5, 10, 15, and 20 mL min−1), pH (2, 5, 7, and 9), and bed depth (10 and 20 cm). Based on the modeling results, it was concluded that the MT model had the best accuracy (R2 = 99.31%, MRE = 0.745% and NRMSE = 6.15%), followed by Th, BDST, YN, DR, and AB. The sensitivity analysis showed that the simulated breakthrough curves were more sensitive to maximum adsorption capacity (qT) than axial dispersion coefficient (DL) and apparent equilibrium constant (k). All models overestimated the breakthrough curves (MRE > 0). OBC was able to eliminate the Hg(II) from the real samples (greywater and petrochemical wastewater), which indicated that the presence of organic compounds in wastewater had no effect on the mercury(II) adsorption efficiency. The overall results showed that the dissolution–precipitation process and ion-exchange reaction were involved in the adsorption of the mercury(II) by OBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

Data cannot be made publicly available; readers should contact the corresponding author for details.

References

  1. Eslamian, S.; Amiri, M.J.; Abedi-Koupai, J.; Karimi, S.S.: Reclamation of unconventional water using nano zero-valent iron particles: an application for groundwater. Int. J. Water 7, 1–13 (2013). https://doi.org/10.1504/IJW.2013.051975

    Article  Google Scholar 

  2. Amiri, M.J.; Abedi-Koupai, J.; Eslamian, S.S.; Mousavi, S.F.; Arshadi, M.: Modelling Pb(II) adsorption based on synthetic and industrial wastewaters by ostrich bone char using artificial neural network and multivariate non-linear regression. Int. J. Hydrol. Sci. Technol. 3, 221–240 (2013). https://doi.org/10.1504/IJHST.2013.058313

    Article  Google Scholar 

  3. Alkurdi, S.S.A.; Al-Juboori, R.A.; Bundschuh, J.; Hamawand, I.: Bone char as a green sorbent for removing health threatening fluoride from drinking water. Environ. Int. 127, 704–719 (2019). https://doi.org/10.1016/j.envint.2019.03.065

    Article  Google Scholar 

  4. Alkurdi, S.S.A.; Herath, I.; Bundschuh, J.; Al-Juboori, R.A.; Vithanage, M.; Mohan, D.: Biochar versus bone char for a sustainable inorganic arsenic mitigation in water: What needs to be done in future research? Environ. Int. 127, 52–69 (2019). https://doi.org/10.1016/j.envint.2019.03.012

    Article  Google Scholar 

  5. Wang, M.; Liu, Y.; Yao, Y.; Han, L.; Liu, X.: Comparative evaluation of bone chars derived from bovine parts: physicochemical properties and copper sorption behavior. Sci. Total Environ. 700, 134470 (2020). https://doi.org/10.1016/j.scitotenv.2019.134470

    Article  Google Scholar 

  6. Amiri, M.J.; Bahrami, M.; Dehkhodaie, F.: Optimization of Hg(II) adsorption on bio-apatite based materials using CCD-RSM design: characterization and mechanism studies. J. Water Health 17, 556–567 (2019). https://doi.org/10.2166/wh.2019.039

    Article  Google Scholar 

  7. Hassan, S.S.; Awwad, N.S.; Aboterika, A.H.: Removal of mercury(II) from wastewater using camel bone charcoal. J. Hazard Mater. 154, 992–997 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.003

    Article  Google Scholar 

  8. Yu, J.-G.; Yue, B.-Y.; Wu, X.-W.; Liu, Q.; Jiao, F.-P.; Jiang, X.-Y.; Chen, X.-Q.: Removal of mercury by adsorption: a review. Environ. Sci. Pollut. Res. 23, 5056–5076 (2016). https://doi.org/10.1007/s11356-015-5880-x

    Article  Google Scholar 

  9. Harada, M.: Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit. Rev. Toxicol. 25, 1–24 (1995). https://doi.org/10.3109/10408449509089885

    Article  Google Scholar 

  10. The Council of the European Communities, Directive 98/83/EC of the Council of 3 November 1998 on the quality of water intended for human consumption.

  11. Lurtwitayapont, S.; Srisatit, T.: Comparison of lead removal by various types of swine bone adsorbents. Environ. Asia 3, 32–38 (2010)

    Google Scholar 

  12. Ghanizadeh, Gh.; Asgari, G.: Adsorption kinetics and isotherm of methylene blue and its removal from aqueous solution using bone charcoal. Reac Kinet Mech Cat. 102, 127–142 (2011). https://doi.org/10.1007/s11144-010-0247-2

    Article  Google Scholar 

  13. Terasaka, S.; Kamitakahara, M.; Yokoi, T.; Ioku, K.: Effect of preparation temperature on the ability of bone char to remove fluoride ion and organic contaminants. J. Ceram. Soc. Jpn. 122, 995–999 (2014). https://doi.org/10.2109/jcersj2.122.995

    Article  Google Scholar 

  14. Park, J.H.; Cho, J.S.; Ok, Y.S.; Kim, S.H.; Kang, S.W.; Choi, I.W.; Heo, J.S.; DeLaune, R.D.; Seo, D.C.: Competitive adsorption and selectivity sequence of heavy metals by chicken bone-derived biochar: batch and column experiment. J. Environ. Sci. Health Part A 50, 1194–1204 (2015). https://doi.org/10.1080/10934529.2015.1047680

    Article  Google Scholar 

  15. Reynel-Avila, H.E.; Mendoza-Castillo, D.I.; Bonilla-Petriciolet, A.: Relevance of anionic dye properties on water decolorization performance using bone char: adsorption kinetics, isotherms and breakthrough curves. J. Mol. Liq. 219, 425–434 (2016). https://doi.org/10.1016/j.molliq.2016.03.051

    Article  Google Scholar 

  16. Amiri, M.J.; Abedi-Koupai, J.; Eslamian, S.S.; Arshadi, M.: Adsorption of Pb(II) and Hg(II) ions from aqueous single metal solutions by using surfactant-modified ostrich bone waste. Desalin Water Treat. 57, 16522–16539 (2016). https://doi.org/10.1080/19443994.2015.1079253

    Article  Google Scholar 

  17. Amiri, M.J.; Arshadi, M.; Giannakopoulos, E.; Kalavrouziotis, I.K.: Removal of mercury (II) and lead (II) from aqueous media by using a green adsorbent: kinetics, thermodynamic, and mechanism studies. J. Hazard Toxic Radioact Waste 22, 04017026 (2018). https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000383

    Article  Google Scholar 

  18. Bahrami, M.; Amiri, M.J.; Dehkhodaie, F.: Effect of different thermal activation on hydroxyapatite to eliminate mercury from aqueous solutions in continuous adsorption system. Int. J. Environ Anal. Chem. 101, 2150–2170 (2021). https://doi.org/10.1080/03067319.2019.1700237

    Article  Google Scholar 

  19. Pan, X.; Wang, J.; Zhang, D.: Sorption of cobalt to bone char: kinetics, competitive sorption and mechanism. Desalination 249, 609–614 (2009). https://doi.org/10.1016/j.desal.2009.01.027

    Article  Google Scholar 

  20. Ghanizadeh, G.; Asgari, G.; Mohammadi, A.M.S.; Ghaneian, M.T.: Kinetics and isotherm studies of hexavalent chromium adsorption from water using bone charcoal. Fresenius Environ. Bull. 21, 1296–1302 (2012)

    Google Scholar 

  21. Martins, J.I.; Órfão, J.J.M.; Soares, O.S.G.P.: Sorption of copper, nickel and cadmium on bone char. Protect Metal. Phys. Chem. Surf. 53, 618–627 (2017). https://doi.org/10.1134/S2070205117040153

    Article  Google Scholar 

  22. Alkurdi, S.S.A.; Al-Juboori, R.A.; Bundschuh, J.; Bowtelle, L.; McKnight, S.: Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal. Environ. Pollut. 262, 114221 (2020). https://doi.org/10.1016/j.envpol.2020.114221

    Article  Google Scholar 

  23. Amiri, M.J.; Abedi-koupai, J.; Eslamian, S.: Adsorption of Hg(II) and Pb(II) ions by nanoscale zero-valent iron supported on ostrich bone ash in a fixed-bed column system. Water Sci. Technol. 76, 671–682 (2017). https://doi.org/10.2166/wst.2017.252

    Article  Google Scholar 

  24. Hu, A.; Ren, G.; Che, J.; Guo, Y.; Ye, J.; Zhou, S.: Phosphate recovery with granular acid-activated neutralized red mud: fixed-bed column performance and breakthrough curve modelling. J. Environ. Sci. 90, 78–86 (2020). https://doi.org/10.1016/j.jes.2019.10.018

    Article  Google Scholar 

  25. Bahrami, M.; Amiri, M.J.; Beigzadeh, B.: Adsorption of 2, 4-dichlorophenoxyacetic acid using rice husk biochar, granular activated carbon, and multi-walled carbon nanotubes in a fixed bed column system. Water Sci. Technol. 78, 1812–1821 (2018). https://doi.org/10.2166/wst.2018.467

    Article  Google Scholar 

  26. Tovar-Gomez, R.; Moreno-Virgen, M.R.; Dena-Aguilar, J.A.; Hernandez-Montoya, V.; Bonilla-Petriciolet, A.; Montes-Moran, M.A.: Modeling of fixed-bed adsorption of fluoride on bone char using a hybrid neural network approach. Chem. Eng. J. 228, 1098–1109 (2013). https://doi.org/10.1016/j.cej.2013.05.080

    Article  Google Scholar 

  27. Amiri, M.J.; Roohi, R.; Arshadi, M.; Abbaspourrad, A.: 2,4-D adsorption from agricultural subsurface drainage by canola stalk-derived activated carbon: insight into the adsorption kinetics models under batch and column conditions. Environ. Sci. Pollut. Res. 27, 16983–16997 (2020). https://doi.org/10.1007/s11356-020-08211-7

    Article  Google Scholar 

  28. Amiri, M.J.; Roohi, R.; Gil, A.: Numerical simulation of Cd(II) removal by ostrich bone ash supported nanoscale zero-valent iron in a fixed-bed column system: utilization of unsteady advection-dispersion-adsorption equation. J. Water Process Eng. 25, 1–14 (2018). https://doi.org/10.1016/j.jwpe.2018.05.017

    Article  Google Scholar 

  29. Masomi, M.; Ghoreyshi, A.A.; Najafpour, G.D.; Mohamed, A.R.B.: Dynamic adsorption of phenolic compounds on activated carbon produced from pulp and paper mill sludge: experimental study and modeling by artificial neural network (ANN). Desalin Water Treat. 55, 1453–1466 (2015). https://doi.org/10.1080/19443994.2014.926834

    Article  Google Scholar 

  30. Saadat, S.; Hekmatzadeh, A.A.; Karimi-Jashni, A.: Mathematical modeling of the Ni(II) removal from aqueous solutions onto pre-treated rice husk in fixed-bed columns: a comparison. Desalin Water Treat. 57, 16907–16918 (2016). https://doi.org/10.1080/19443994.2015.1087877

    Article  Google Scholar 

  31. Hekmatzadeh, A.A.; Karimi-Jashni, A.; Talebbeydokhti, N.; Kløve, B.: Modeling of nitrate removal for ion exchange resin in batch and fixed bed experiments. Desalination 284, 22–31 (2012). https://doi.org/10.1016/j.desal.2011.08.033

    Article  Google Scholar 

  32. Amiri, M.J.; Khozaei, M.; Gil, A.: Modification of the Thomas model for predicting unsymmetrical breakthrough curves using an adaptive neural-based fuzzy inference system. J. Water Health 17, 25–36 (2019). https://doi.org/10.2166/wh.2019.210

    Article  Google Scholar 

  33. Hosseini, S.M.; Kholghi, M.; Vagharfard, H.: Numerical and meta-modeling of nitrate transport reduced by nano-Fe/Cu particles in packed sand column. Transport Porous Med. 94, 149–174 (2012). https://doi.org/10.1007/s11242-012-9994-z

    Article  Google Scholar 

  34. Cavas, L.; Karabay, Z.; Alyuruk, H.; Dogan, H.; Demir, G.K.: Thomas and artificial neural network models for the fixed-bed adsorption of methylene blue by a beach waste Posidonia oceanica (L.) dead leaves. Chem. Eng. J. 171, 557–562 (2011). https://doi.org/10.1016/j.cej.2011.04.030

    Article  Google Scholar 

  35. Deokar, S.K.; Mandavgane, S.A.; Kulkarni, B.D.: Adsorptive removal of 2,4-dichlorophenoxyacetic acid from aqueous solution using bagasse fly ash as adsorbent in batch and packed-bed techniques. Clean. Tech. Environ Policy 18, 1971–1983 (2016). https://doi.org/10.1007/s10098-016-1124-0

    Article  Google Scholar 

  36. Cruz-Olivares, J.; Pérez-Alonso, C.; Barrera-Díaz, C.; Ureña-Nuñez, F.; Chaparro-Mercado, M.C.; Bilyeu, B.: Modeling of lead (II) biosorption by residue of allspice in a fixed-bed column. Chem. Eng. J. 228, 21–27 (2013). https://doi.org/10.1016/j.cej.2013.04.101

    Article  Google Scholar 

  37. Jang, S.H.; Min, B.G.; Jeong, Y.G.; Lyoo, W.S.; Lee, S.C.: Removal of lead ions in aqueous solution by hydroxyapatite/polyurethane composite foams. J. Hazard Mater. 152, 1285–1292 (2008). https://doi.org/10.1016/j.jhazmat.2007.08.003

    Article  Google Scholar 

  38. IUPAC. Manual of symbols and terminology. Pure Appl Chem 31, 587 (1972).

  39. Wang, Y.-Y.; Liu, Y.-X.; Lu, H.-H.; Yang, R.-Q.; Yang, S.-M.: Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions. J. Solid State Chem. 261, 53–61 (2018). https://doi.org/10.1016/j.jssc.2018.02.010

    Article  Google Scholar 

  40. Rojas-Mayorga, C.K.; Bonilla-Petriciolet, A.; Aguayo-Villareal, I.A.; Hernández-Montoya, V.; Moreno-Virgen, M.R.; Tovar-Gómez, R.; Montes-Morán, M.A.: Optimization of pyrolysis conditions and adsorption properties of bone char for fluoride removal from water. J. Anal. Appl. Pyrolysis 104, 10–18 (2013). https://doi.org/10.1016/j.jaap.2013.09.018

    Article  Google Scholar 

  41. Rojas-Mayorga, C.K.; Bonilla-Petriciolet, A.; Silvestre-Albero, J.; Aguayo-Villarreal, I.A.; Mendoza-Castillo, D.I.: Physico-chemical characterization of metal-doped bone chars and their adsorption behavior for water defluoridation. Appl. Surf. Sci. 355, 748–760 (2015). https://doi.org/10.1016/j.apsusc.2015.07.163

    Article  Google Scholar 

  42. Amiri, M.J.; Faraji, A.; Azizi, M.; Goudarzi Nejad, B.; Arshadi, M.: Recycling bone waste and cobalt-wastewater into a highly stable and efficient activator of peroxymonosulfate for dye and HEPES degradation. Process Saf. Environ. Prot. 147, 626–641 (2021). https://doi.org/10.1016/j.psep.2020.12.039

    Article  Google Scholar 

  43. Anbia, M.; Amirmahmoodi, S.: Removal of Hg (II) and Mn (II) from aqueous solution using nanoporous carbon impregnated with surfactants. Arab. J. Chem 9, S319–S325 (2016). https://doi.org/10.1016/j.arabjc.2011.04.004

    Article  Google Scholar 

  44. Gupta, A.; Vidyarthi, S.R.; Sankararamakrishnan, N.: Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. J Hazard Mater. 274, 132–144 (2014). https://doi.org/10.1016/j.jhazmat.2014.03.020

    Article  Google Scholar 

  45. Rahmi, R.; Fathurrahmi, F.; Lelifajri, L.; PurnamaWati, F.: Preparation of magnetic chitosan using local iron sand for mercury removal. Heliyon 5, e01731 (2019). https://doi.org/10.1016/j.heliyon.2019.e01731

    Article  Google Scholar 

  46. Kamyabi, M.A.; Kazemi, D.; Bikas, R.; Soleymani-Bonoti, F.: Investigation of the Hg(II) biosorption from wastewater by using garlic plant and differential pulse voltammetry. Anal. Biochem. 627, 114263 (2021)

    Article  Google Scholar 

  47. Shukla, S.R.; Sakhardande, V.D.: Column studies on metal ion removal by dyed cellulosic materials. J. Appl. Polymer Sci. 44, 903–910 (1992). https://doi.org/10.1002/app.1992.070440518

    Article  Google Scholar 

  48. Goel, J.; Kadirvelu, K.; Rajagopal, C.: Mercury (II) removal from water by coconut shell based activated carbon: Batch and column studies. Environ. Technol. 25, 141–153 (2004). https://doi.org/10.1080/09593330409355447

    Article  Google Scholar 

  49. Tan, G.; Sun, W.; Xu, Y.; Wang, H.; Xu, N.: Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution. Biores. Technol. 211, 727–735 (2016). https://doi.org/10.1016/j.biortech.2016.03.147

    Article  Google Scholar 

  50. Giraldo, S.; Robles, I.; Ramirez, A.; Florez, E.; Acelas, N.: Mercury removal from wastewater using agroindustrial waste adsorbents. SN Appl. Sci. 2, 1029 (2020). https://doi.org/10.1007/s42452-020-2736-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fasa University for the supporting of this work.

Funding

No funding has been received for this work.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Amiri conceived of the presented idea. Dr. Amiri and Mr. Nekouee carried out the experiment. Dr. Amiri and Dr. Bahrami developed the theory and performed the computations. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to Mohammad Javad Amiri.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethics Approval and Consent to Participate

We verify that we have seen and have approved the submitted manuscript. Our manuscript does not report on or involve the use of any animal or human data or tissue.

Consent for Publication

None.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 439 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, M.J., Bahrami, M. & Nekouee, N. Analysis of Breakthrough Curve Performance Using Theoretical and Empirical Models: Hg2+ Removal by Bone Char from Synthetic and Real Water. Arab J Sci Eng 48, 8737–8751 (2023). https://doi.org/10.1007/s13369-022-07432-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07432-x

Keywords

Navigation