Skip to main content

Advertisement

Log in

Performance Analysis of the Dual-Circuit Full Hydraulic Braking System Under Multi-Factor Coupling

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The full hydraulic braking systems have gradually replaced the traditional mechanically actuated brake systems due to their increased performance, reliability, and safety. Besides their excellent characteristics, the functional performance of individual components, the correlation of their performance parameters, and energy consumption are not fully explored. In this paper, An Advanced Modeling Environment for performing Simulation of engineering systems (AMESim) simulation model of a fully hydraulic braking system is developed and validated, and the sensitivity of different parameters to the system performance is predicted. The multi-factor comprehensive optimization analysis was carried out from the system level for the first time. The brake energy consumption and interaction time are evaluated through a Genetic Algorithm (GA) considering a multi-factor coupling condition. The optimization results revealed that the outlet pressure and braking pump power are reduced by 35.6%, the energy consumption is reduced by 32.8%, and the braking times are increased by 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Yang, Y.; Xia, G.F.; Deng, Z.H.: Simulation research on fully hydraulic wet braking system of wheel loader. Constr. Mach. Equip. 52(7), 34–39 (2021)

    Google Scholar 

  2. Peng, Y.S.; Hu, K.J.; Xiao, L.P.: Design of hydraulic braking system of rope traction rail transport vehicle. Chin. Hydraul. Pneum. 45(11), 106–111 (2021)

    Google Scholar 

  3. Wang, T.J.; Fu, D.L.; Zhang, M.R.: Research on the dynamic characteristics of the relay valve of fully hydraulic braking system. J. Hunan Univ. (Nat. Sci.) 48(4), 126–134 (2021)

    Google Scholar 

  4. Han, W.; Xiong, L.; Yu, Z.H.P.: Braking pressure control in electro-hydraulic brake system based on pressure estimation with nonlinearities and uncertainties. Mech. Syst. Signal Process. 131(15), 703–727 (2019)

    Article  Google Scholar 

  5. Gong, M.D.; Wei, H.L.; Liu, X.H.: Full power hydraulic brake system based on double pipelines for heavy vehicles. Chin. J. Mech. Eng. 24(5), 790–797 (2011)

    Article  Google Scholar 

  6. Song, J.B.; Lin, M.Y.; Yang, H.Q.: Research and application on charging system of fully hydraulic braking system on construction vehicle. Hydrodyn. Hydrostatics 11(25), 126–128 (2011)

    Google Scholar 

  7. Niu, H.J.: Application and design of fully hydraulic double circuit braking system in construction machinery. Constr. Mach. Technol. Manag. 33(3), 84–87 (2020)

    Google Scholar 

  8. Jiang, Y.; Luo, Y.L.: Design of fully hydraulic brake test system based on LabVIEW. Mach. Tool Hydraul. 45(16), 165–167 (2017)

    Google Scholar 

  9. Song, H.H.; Zhang, Z.D.; Shi, N.N.: Simulation analysis of variable parameters of control valve in full hydraulic braking system. Energy Res. Inf. 34(4), 237–244 (2018)

    Google Scholar 

  10. Wen, Y.Q.; Bi, S.: Research on braking impact characteristics of fully hydraulic braking system based on AMESim. Constr. Mach. Maint. 4, 70–71 (2020)

    Google Scholar 

  11. Ning, Y.; Liu, X.H.; Chen, J.S.: Research on dynamic characteristic of charging valve of the full hydraulic braking system. Appl. Mech. Mater. 26(13), 373–375 (2013)

    Google Scholar 

  12. Chen, J.S.; Liu, X.H.; Wang, T.J.: Charging valve of the full hydraulic braking system. Adv. Mech. Eng. 8(3), 1–11 (2016)

    Article  Google Scholar 

  13. Misevičius, A.; Palubeckis, G.; Drezner, Z.: Hierarchicity-based (self-similar) hybrid genetic algorithm for the grey pattern quadratic assignment problem. Memet. Comput. 13(1), 69–90 (2021)

    Article  Google Scholar 

  14. Gan, Y.; Guo, H.; Zhou, Z.H.: 3D NoC low-power mapping optimization based on improved genetic algorithm. Micromachines 12(10), 12–17 (2021)

    Article  Google Scholar 

  15. Mitchell, M.: An Introduction to Genetic Algorithms, p. 32. MMIT Press, Cambridge (1996)

    Google Scholar 

  16. Yan, C.H.; Li, M.X.; Zhou, X.: Application of improved genetic algorithm in function optimization. J. Inf. Sci. Eng. 35(6), 1299–1309 (2019)

    Google Scholar 

  17. Rawal, K.; Sethi, G.: Design of matched wavelet using improved genetic algorithm for heart stiffness variability analysis of the menstrual cycle. Int. J. Image Graph. 21(3) (2021)

  18. Yu, M.; Shi, B.Q.: Optimal design and robust analysis of accumulator in hydraulic braking system. Trans. Chin. Soc. Agric. Eng. 27(6) (2011)

  19. Zhang, Z.D.; Shi, N.N.; Jiang, W.P.: Research on performance simulation and structure optimization of charging valve in full hydraulic braking system. Mach. Des. Manuf. 1(12), 43–47 (2015)

    Article  Google Scholar 

  20. Li, C.S.; Liu, X.H.; Wang, X.: Optimization of multi-way valve structure in digital hydraulic system of loader. Energies 14(3) (2021)

  21. Zhou, C.; Liu, X.H.; Xu, F.X.: Design optimization of steering mechanisms for articulated off-road vehicles based on genetic algorithms. Algorithms 11(2) (2018)

  22. Pei, H.J.; Cui, Y.L.; Kong, B.B., et al.: Structural parameters optimization of submerged inlet using least squares support vector machines and improved genetic algorithm-particle swarm optimization approach. Eng. Appl. Comput. Fluid Mech. 15(1), 503–511 (2021)

    Google Scholar 

  23. Liu, J.J.; Zhao, T.; Liu, K., et al.: Optimization of structure parameters in a coal pyrolysis filtration system based on CFD and quadratic regression orthogonal combination and a genetic algorithm. Eng. Appl. Comput. Fluid Mech. 15(1), 815–829 (2021)

    Google Scholar 

  24. Ghalandari, M.; Ziamolki, A.; Mosavi, A., et al.: Aeromechanical optimization of first row compressor test stand blades using a hybrid machine learning model of genetic algorithm. Artif. Neural Netw. Des. Exp. Eng. Appl. Comput. Fluid Mech. 13(1), 892–904 (2019)

    Google Scholar 

  25. Wu, C.L.; Chau, K.W.: A flood forecasting neural network model with genetic algorithm. Int. J. Environ. Pollut. 28(3–4), 261–273 (2006)

    Article  Google Scholar 

  26. Yang, Y.; Wang, H.B.; Xia, G.F.: Modeling and simulation analysis of wet multi-disk service braking system for heavy vehicles. IEEE Access 8, 150059–150071 (2020)

    Article  Google Scholar 

  27. Gao, C.G.; Lin, M.Y.; Hou, J.P.: Modeling and simulation of hydraulic pipeline for full power braking system of construction vehicle. Hydrostatics Hydrodyn. 41(12), 42–45 (2010)

    Google Scholar 

  28. Guo, R.; Chang, R.L.; Zhao, J., et al.: Research on accumulator charging characteristics of hydraulic brake system. Trans. Chin. Soc. Agric. Mach. 18(7), 7–12 (2014)

    Google Scholar 

  29. Hu, B.; Zhang, Z.D.; Wang, X.Y., et al.: Simulation and experiments on dual circuit hydraulic braking value of hydraulic braking system. Energy Res. Inf. 32(1), 39–44 (2016)

    Google Scholar 

  30. GBT 21152-2007 Earth-moving machinery. Wheeled machines. Performance requirements and test methods for braking systems

  31. Thum, C.; Sung, H.P.; Ato, K.: Development of hydraulic friction brake for railway rolling stock. JSME Int. J. 47(4), 1166–1174 (2004)

    Google Scholar 

  32. Xiao, L.J.; Qi, H.; Sun, C.Y., et al.: Monorail emergency braking hydraulic system modeling and simulation analysis. Coal Mine Mach. 11, 110–112 (2014)

    Google Scholar 

  33. Lin, D.Z.; Yang, F.; Gong, D., et al.: Experimental investigation of two types interconnected hydro-pneumatic struts. IEEE Access 7, 100626–100637 (2019)

    Article  Google Scholar 

  34. Zi, B.; Zhang, L.; Zhang, D., et al.: Modeling, analysis, and co-simulation of cable parallel manipulators for multiple cranes. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 229(9), 1693–1707 (2015)

    Article  Google Scholar 

  35. Yang, S.Y.; Ou, Y.B.; Guo, Y., et al.: Analysis and optimization of the working parameters of the impact mechanism of hydraulic rock drill based on a numerical simulation. Int. J. Precis. Eng. Manuf. 18(7), 971–977 (2017)

    Article  Google Scholar 

  36. Sourabh, K.; Sumit, S.C.; Vijay, K.: A review on genetic algorithm: past, present, and future. Multimed. Tools Appl. 80(5), 8097–8126 (2021)

    Google Scholar 

  37. Sun, Y.; Li, J.R.; Fu, X.L.: Application research based on improved genetic algorithm in cloud task scheduling. J. Intell. Fuzzy Syst. 38(1), 239–246 (2020)

    Article  Google Scholar 

  38. Drezner, Z.; Drezner, T.D.: Biologically inspired parent selection in genetic algorithms. Ann. Oper. Res. 287(1), 161–183 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  39. Seyedfakhreddin, N.; Zhang, L.H.: Design and optimization of piezoelectric MEMS vibration energy harvesters based on genetic algorithm. IEEE Sens. 17, 7372–7382 (2017)

    Article  Google Scholar 

  40. Senthilkumar, B.; Kannan, T.; Madesh, R.: Optimization of flux-cored arc welding process parameters by using genetic algorithm. Int. J. Adv. Manuf. Technol. 93(1–4), 35–41 (2017)

    Article  Google Scholar 

  41. Zhang, H.; Hua, M.; Dong, G.Z.: Optimization of texture shape based on Genetic Algorithm under unidirectional sliding. Tribol. Int. 115(1), 222–232 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was funded by The National Key Research and Development Program of China under Grant No. 2016YFC0802904.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-Wei Cao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, P., Liu, Xh., Cao, BW. et al. Performance Analysis of the Dual-Circuit Full Hydraulic Braking System Under Multi-Factor Coupling. Arab J Sci Eng 48, 11309–11322 (2023). https://doi.org/10.1007/s13369-022-07425-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07425-w

Keywords

Navigation