Skip to main content

Advertisement

Log in

Power Factor Improvement and MPPT of the Grid-Connected Solar Photovoltaic System Using Nonlinear Integral Backstepping Controller

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The power generated by solar photovoltaic cells (SPVC) depends on environmental conditions and is intermittent. Furthermore, a standalone solar system is not suitable for continuously powering an active load. In this study, a single-phase grid-tied solar hybrid system with intelligent power-sharing capability is proposed.  Maximum power point tracking (MPPT) algorithm is applied to extract maximum power from the solar photovoltaic (SPV) array with a nonlinear induction motor (IM) connected as a load. Nonlinear load at output reduces the power factor of the system; therefore, the power factor correction (PFC) circuit is designed to maintain a power factor (PF) nearly equal to unity. A model of the non-inverting boost converter is also designed in this work. A nonlinear controller with integral backstepping (IBS) is proposed in this work for MPPT of the SPV array with simultaneous power factor improvement. The control of IM connected with the voltage source inverter is achieved by using the voltage/frequency (V/F) technique. The proposed PFC controller and the MPPT technique are compared with a conventional proportional–integral (PI) controller. Simulation results demonstrate that by using an IBS controller the PF of the system is improved to 99.2%; hence, the proposed controller is more robust and efficient. This controller also reduced the system’s total harmonic distortion to 1%. The proposed techniques are implemented in MATLAB/SIMULINK to validate the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Joshi, O.K.; Dhuri, A.; Patil, R.; Save, B.: An overview on the rising solar energy. VIVA-Tech Int. J. Res. Innov. 1(4), 1–3 (2021)

    Google Scholar 

  2. Kouro, S.; Leon, J.I.; Vinnikov, D.; Franquelo, L.G.: Grid-connected photovoltaic systems: an overview of recent research and emerging PV converter technology. IEEE Ind. Electron. Mag. 9(1), 47–61 (2015)

    Article  Google Scholar 

  3. Barade, S.; Tibude, S.: Review on photovoltaic based grid-tied system using h6 transformer less full-bridge inverters. Int. J. Adv. Res. Sci. Commun. Technol. 2, 62–65 (2021)

    Google Scholar 

  4. Newkrik, M.: What is a hybrid solar system? Clean Energy Rev., 16 May. 2015. https://www.cleanenergyreviews.info/blog/2014/8/14/what-is-hybrid-solar/

  5. Argaw, N.: Renewable Energy Water Pumping Systems Handbook. National Renewable Energy Lab, Golden (2004)

    Google Scholar 

  6. Biswas, S.; Iqbal, M.T.: Dynamic modelling of a solar water pumping system with energy storage. J. Sol. Energy 2018, 1–12 (2018)

    Article  Google Scholar 

  7. Podder, S.; Khan, M.Z.R.: Comparison of lead acid and Li-ion battery in solar home system of Bangladesh. In: 5th International Conference on Informatics, Electronics and Vision (ICIEV), pp. 434–438, (2016)

  8. Jain, S.; Thopukara, A.K.; Karampuri, R.; Somasekhar, V.T.: A single-stage photovoltaic system for a dual-inverter-fed open-end winding induction motor drive for pumping applications. IEEE Trans. Power Electron. 30(9), 4809–4818 (2014)

    Article  Google Scholar 

  9. Singh, B.; Kumar, R.: Simple brushless DC motor drive for solar photovoltaic array fed water pumping system. IET Power Electron. 9(7), 1487–1495 (2016)

    Article  Google Scholar 

  10. Caracas, J.V.M.; de Carvalho Farias, G.; Teixeira, L.F.M.; de Souza Ribeiro, L.A.: Implementation of a high-efficiency, high-lifetime, and low-cost converter for an autonomous photovoltaic water pumping system. IEEE Trans. Ind. Appl. 50(1), 631–641 (2013)

    Article  Google Scholar 

  11. Sharma, U.; Dwivedi, S.; Jain, C.; Singh, B.: Single stage solar PV array fed field oriented controlled induction motor drive for water pump. In: National Power Electronics Conf.(NPEC), IIT Bombay, (2015)

  12. Kumar, A.; Kochhar, E.; Upamanyu, K.: Photovoltaic and wind energy hybrid sourced voltage based indirect vector controlled drive for Water Pumping System. In: IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), pp. 1–5, (2015)

  13. Gordo, E.; Khalaf, N.; Strangeowl, T.; Dolino, R.; Bennett, N.: Factors affecting solar power production efficiency. Supercomputing Challenge, Miyamura High School. (2015)

  14. Arsalan, M.; Iftikhar, R.; Ahmad, I.; Hasan, A.; Sabahat, K.; Javeria, A.: MPPT for photovoltaic system using nonlinear backstepping controller with integral action. Sol. Energy 170, 192–200 (2018)

    Article  Google Scholar 

  15. Al-Gizi, A.; Craciunescu, A.; Al-Chlaihawi, S.: Improving the performance of PV system using genetically-tuned FLC based MPPT. In: IEEE International Conference on Optimization of Electrical and Electronic Equipment (OPTIM) & 2017 Intl Aegean Conference on Electrical Machines and Power Electronics (ACEMP), pp. 642–647, (2017)

  16. Bhatnagar, P.; Nema, R.K.: Maximum power point tracking control techniques: state-of-the-art in photovoltaic applications. Renew. Sustain. Energy Rev. 23, 224–241 (2013)

    Article  Google Scholar 

  17. Masoum, M.A.; Dehbonei, H.; Fuchs, E.F.: Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking. IEEE Trans. Energy Convers. 17(4), 514–522 (2002)

    Article  Google Scholar 

  18. Enslin, J.H.; Wolf, M.S.; Snyman, D.B.; Swiegers, W.: Integrated photovoltaic maximum power point tracking converter. IEEE Trans. Industr. Electron. 44(6), 769–773 (1997)

    Article  Google Scholar 

  19. Ali, K.; Khan, Q.; Ullah, S.; Khan, I.; Khan, L.: Nonlinear robust integral backstepping based MPPT control for stand-alone photovoltaic system. PLoS ONE 15(5), e0231749 (2020)

    Article  Google Scholar 

  20. Hassan, T.U.; Abbassi, R.; Jerbi, H.; Mehmood, K.; Tahir, M.F.; Cheema, K.M.; Elavarasan, R.M.; Ali, F.; Khan, I.A.: A novel algorithm for MPPT of an isolated PV system using push pull converter with fuzzy logic controller. Energies 13(15), 4007 (2020)

    Article  Google Scholar 

  21. Hmidet, A.; Subramaniam, U.; Elavarasan, R.M.; Raju, K.; Diaz, M.; Das, N.; Mehmood, K.; Karthick, A.; Muhibbullah, M.; Boubaker, O.: Design of efficient off-grid solar photovoltaic water pumping system based on improved fractional open circuit voltage MPPT technique. Int. J. Photoenergy 2021, 1–18 (2021)

    Article  Google Scholar 

  22. Elgendy, M.A.; Zahawi, B.; Atkinson, D.J.: Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications. IEEE Trans. Sustain. Energy 3(1), 21–33 (2011)

    Article  Google Scholar 

  23. Elgendy, M.A.; Atkinson, D.J.; Zahawi, B.: Experimental investigation of the incremental conductance maximum power point tracking algorithm at high perturbation rates. IET Renew. Power Gener. 10(2), 133–139 (2016)

    Article  Google Scholar 

  24. Heydari-doostabad, H.; Keypour, R.; Khalghani, M.R.; Khooban, M.H.: A new approach in MPPT for photovoltaic array based on extremum seeking control under uniform and non-uniform irradiances. Sol. Energy 94, 28–36 (2013)

    Article  Google Scholar 

  25. Mohammed, S.S.; Devaraj, D.; Ahamed, T.I.: A novel hybrid maximum power point tracking technique using perturb & observe algorithm and learning automata for solar PV system. Energy 112, 1096–1106 (2016)

    Article  Google Scholar 

  26. Moradi, M.H.; Tousi, S.R.; Nemati, M.; Basir, N.S.; Shalavi, N.: A robust hybrid method for maximum power point tracking in photovoltaic systems. Sol. Energy 94, 266–276 (2013)

    Article  Google Scholar 

  27. Zurbriggen, I.G.; Paz, F.; Ordonez, M.: Direct MPPT control of PWM converters for extreme transient PV Applications. In: IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 386–391, (2016)

  28. Armghan, H.; Ahmad, I.; Armghan, A.; Khan, S.; Arsalan, M.: Backstepping based non-linear control for maximum power point tracking in photovoltaic system. Sol. Energy 159, 134–141 (2018)

    Article  Google Scholar 

  29. Mumtaz, S.; Ahmad, S.; Khan, L.; Ali, S.; Kamal, T.; Hassan, S.Z.: Adaptive feedback linearization based neurofuzzy maximum power point tracking for a photovoltaic system. Energies 11(3), 606 (2018)

    Article  Google Scholar 

  30. Dahech, K.; Allouche, M.; Damak, T.; Tadeo, F.: Backstepping sliding mode control for maximum power point tracking of a photovoltaic system. Electric Power Syst. Res. 143, 182–188 (2017)

    Article  Google Scholar 

  31. Sekhar, V.C.; Kant, K.; Singh, B.: DSTATCOM supported induction generator for improving power quality. IET Renew. Power Gener. 10(4), 495–503 (2016)

    Article  Google Scholar 

  32. Chaudhari, M.A.; Suryawanshi, H.M.; Renge, M.M.: A three-phase unity power factor front-end rectifier for AC motor drive. IET Power Electron. 5(1), 1–10 (2012)

    Article  Google Scholar 

  33. Maciel, R.S.; de Freitas, L.C.; Coelho, E.A.A.; Vieira, J.B.; de Freitas, L.C.G.: Front-end converter with integrated PFC and DC–DC functions for a fuel cell UPS with DSP-based control. IEEE Trans. Power Electron. 30(8), 4175–4188 (2014)

    Article  Google Scholar 

  34. Roggia, L.; Beltrame, F.; Baggio, J.E.; Pinheiro, J.R.: Digital current controllers applied to the boost power factor correction converter with load variation. IET Power Electron. 5(5), 532–541 (2012)

    Article  Google Scholar 

  35. Duarte, J.; Lima, L.R.; Oliveira, L.; Michels, L.; Rech, C.; Mezaroba, M.: Single-stage high power factor step-up/step-down isolated AC/DC converter. IET Power Electron. 5(8), 1351–1358 (2012)

    Article  Google Scholar 

  36. Sharma, U.; Singh, B.; Kumar, S.: Intelligent grid interfaced solar water pumping system. IET Renew. Power Gener. 11(5), 614–624 (2017)

    Article  Google Scholar 

  37. Vaidyanathan, S.; Azar, A.T. (eds.): Backstepping Control of Nonlinear Dynamical Systems. Academic Press, Cambridge (2020)

    Google Scholar 

  38. Jasim, W.M.; Gu, D.: Integral backstepping controller for UAVs team formation. In Automation and Control. IntechOpen, (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Farhan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, S., Farhan, M., Raza, S. et al. Power Factor Improvement and MPPT of the Grid-Connected Solar Photovoltaic System Using Nonlinear Integral Backstepping Controller. Arab J Sci Eng 48, 6453–6470 (2023). https://doi.org/10.1007/s13369-022-07416-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07416-x

Keywords

Navigation