Skip to main content
Log in

Dynamic Characterization of MR Fluid-Based Dynamic Vibration Absorber

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

A magnetorheological (MR) damper is effective and economical for miscellaneous applications in automotive, mechanical, civil, and relative fields. A parameter tuning methodology independent of manual trial-and-error has received much technical interest for controlling vibrations. The present work contributes mathematical and Simulink modeling followed by MR damper design and development for vibration optimization of the single degree of freedom system. A Simulink model of an MR damper is performed on the mathematical model for vibration control, and the MR damper’s tuning parameters are experimentally investigated to control the resonance frequency. Theoretical simulated results and its experimental verification show that increasing current raises the force to control the resonance frequency in an MR damper. The present approach provides a concise and improved platform for dynamic vibration absorber in the current potential market and the highly interested control community for the development of the distinctive attributes of the MR Damper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Abbreviations

A :

Parameter to determine the hysteresis loop in the Bouc–Wen model (dimensionless)

c 0 :

Viscous damping at large velocities, Ns/m

c 1 :

Dashpot used to introduce the nonlinear roll-off observed at low velocities, Ns/m

c 2 :

Damper of the secondary system, Ns/m

C 0b :

Constant that determines Co, Ns/m

C 1a :

Constant that determines C1, Ns/m

C 1b :

Constant that determines C1b, Ns/mV

F :

Frequency of external force, Hz

f d :

Force of damper, N

\({F}_{o}\) :

Amplitude of exciting force due to eccentricity, N

e :

Radial eccentricity of its cam, m

K o :

Preload stiffness, N/m

K 1 :

Primary (supporting) system stiffness, N/m

K 2 :

Secondary (absorber) system stiffness, N/m

K 3 :

Accumulator stiffness, N/m

m :

Mass of eccentricity, kg

m 1 :

Primary mass, kg

m 2 :

Secondary (absorber) mass, kg

z, \(\dot{z}\) :

Variable to depict the history dependence of applied response, Hz

X :

Displacement of the damper piston, m

\(\dot{y}\) :

Velocity of the damper piston, m/s

N :

Wen model (dimensionless)

x 0 :

Initial displacement of spring k1 associated with nominal damper force to accumulator, m

x 1, x 2 :

Displacement of m1 and m2, m

\({\ddot{x}}_{1},{\ddot{x}}_{2}\) :

Acceleration of m1 and m2, m/s2

Α :

Scaling value for Bouc–Wen model, N/m

α a :

Constant that determines α, N/m

α b :

Constant that determines α, N/mV

γ μ :

Parameter that determines the hysteresis loop in the Bouc–Wen model, m−2

\({\mu }^{{\prime}}\) :

Mass ratio (dimensionless)

\(\dot{u}\) :

Constant to govern the first-order filter, s−1

t :

Time, s

\(\omega\) :

Frequency of rotation, rpm

η :

Constant to govern the first-order filter, s−1

SDOF:

Single degree of freedom system

DVA:

Dynamic vibration absorber

MRDVA:

Magnetorheological dynamic vibration absorber

TVS:

Transient voltage suppression

References

  1. Seong, M.S.; Choi, S.B.; Sung, K.G.: Control strategies for vehicle suspension system featuring magnetorheological (MR) damper. Vib. Anal. Control New Trends Dev. (2011). https://doi.org/10.5772/24556

    Article  Google Scholar 

  2. Choi, S.B.; Li, W.; Yu, M.; Du, H.; Fu, J.; Do, P.X.: State of the art of control schemes for smart systems featuring magnetorheological materials. Fac. Eng. Inf. Sci. Pap. Part A 25(4), 1–67 (2016)

    Google Scholar 

  3. Du, H.; Lam, J.; Cheung, K.C.; Li, W.; Zhang, N.: Direct voltage control of magnetorheological damper for vehicle suspensions. Smart Mater. Struct. (2013). https://doi.org/10.1088/0964-1726/22/10/105016

    Article  Google Scholar 

  4. Ahamed, R.; Ferdaus, M.M.; Li, Y.: Advancement in energy harvesting magnetorheological fluid damper: a review. Korea Aust. Rheol. J. 28(4), 355–379 (2016)

    Article  Google Scholar 

  5. Kunadharaju, R.R.; Varma, V.: Vibration control of structures and structural components with magnetorheological fluids. Curr. Sci. 112(3), 499–508 (2017)

    Article  Google Scholar 

  6. Daniel, C.; Hemalatha, G.; Sarala, L.; Tensing, D.; Sundar Manoharan, S.: Seismic mitigation of building frames using magnetorheological damper. Int. J. Eng. Trans. B Appl. 32(11), 1543–1547 (2019)

    Google Scholar 

  7. Naserimojarad, M.M.; Moallem, M.: A comprehensive approach for optimal design of magnetorheological dampers. J. Intell. Mater. Syst. Struct. 29, 3648–3655 (2018)

    Article  Google Scholar 

  8. Desai, R.M.; Jamadar, M.E.H.; Kumar, H.; Joladarashi, S.; Raja Sekaran, S.C.: Design and experimental characterization of a twin-tube MR damper for a passenger van. J. Braz. Soc. Mech. Sci. Eng. 41(8), 1–21 (2019)

    Article  Google Scholar 

  9. Kumbhar, M.B.; Salunkhe, V.G.; Borgaonkar, A.V.; Jagadeesha, T.: Mathematical modelling and experimental evaluation of an air spring-air damper dynamic vibration absorber. J. Vib. Eng. Technol. 9, 781–789 (2021). https://doi.org/10.1007/s42417-020-00263-w

    Article  Google Scholar 

  10. Sun, S.; Tang, X.; Li, W.; Du, H.; et al.: Advanced vehicle and suspension with variable stiffness and damping MR Damper. IIEE, pp. 444–448 (2017)

  11. Jamadar, M.; Desai, R.M.; Kumar, H.; Joladarashi, S.: Analyzing quarter car model with magneto-rheological (MR) damper using equivalent damping and Magic formula models. Mater. Today Proc. 46, 9944–9949 (2021)

    Article  Google Scholar 

  12. El-Sinawi, A.H.; Alhamaydeh, M.H.; Jhemi, A.A.: Optimal control of magnetorheological fluid dampers for seismic isolation of structures. Math. Probl. Eng. 2013, 1–7 (2013). https://doi.org/10.1155/2013/251935

    Article  Google Scholar 

  13. Ahamed, T.I.; Sundarrajan, R.; Prasaath, G.T.; Raviraj, V.: Implementation of magnetorheological dampers in bumpers of automobiles for reducing impacts during accidents. Procedia Eng. 97, 1220–1226 (2014)

    Article  Google Scholar 

  14. Siginer, D.A.; Letelier, M.F.; Stockle, J.: A new approach to the modeling of magnetorheological dampers and application to resonance control. J. Fluids Eng. ASME 143(091504), 1–8 (2021)

    Google Scholar 

  15. Orecny, M.; Segla, S.; Hunady, R.; Ferkova, Z.: Application of a magnetorheological damper and a dynamic absorber for a suspension of a working machine seat. Procedia Eng. 96, 338–344 (2014)

    Article  Google Scholar 

  16. Parlak, Z.; Engin, T.: Optimal magnetorheological damper configuration using the taguchi experimental design method. J. Mech. Des. Trans. ASME 135(8), 1–9 (2013)

    Article  Google Scholar 

  17. Dutta, S.; Chakraborty, G.: Modeling and characterization of a magnetorheological fluid-based damper and analysis of vibration isolation with the damper operating in passive mode. J. Sound Vib. 353, 96–118 (2015)

    Article  Google Scholar 

  18. Weber, F.; Distl, H.; Fischer, S.; Braun, C.: MR damper controlled vibration absorber for enhanced mitigation of harmonic vibrations. Actuators 5(27), 1–28 (2016)

    Google Scholar 

  19. Christie, M.D.; Sun, S.; Deng, L.; Ning, D.; Du, H.; Zhang, S.; Li, W.: The variable resonance magnetorheological pendulum tuned mass damper: mathematical modelling and seismic experimental studies. J. Intell. Mater. Syst. Struct. 31, 263–276 (2019)

    Article  Google Scholar 

  20. Yuan, R.; Yang, Y.; Chao, Su.; Shaopei, Hu.; Zhang, H.; Cao, E.: Research on vibration reduction control based on reinforcement learning. Hindawi Adv. Civ. Eng. 2021, 1–18 (2021)

    Google Scholar 

  21. Lenggana, B.W.; Ubaidillah, U.; Imaduddin, F.; Choi, S.-B.: Review of magnetorheological damping systems on a seismic building. Syst. Seism. Build. Appl. Sci. 11(9339), 1–28 (2021)

    Google Scholar 

  22. Shiao, Y.; Kuo, W.H.; Nguyen, Q.A.; Lai, C.W.: Development of a variable-damping magnetorheological damper with multiple poles. J. Vibroeng. 17(3), 1071–1078 (2015)

    Google Scholar 

  23. Luong, Q.V.; Jang, D.S.; Hwang, J.H.: Semi-active control for a helicopter with multiple landing gears equipped with magnetorheological dampers. Appl. Sci. MDPI 11(8), 1–18 (2021)

    Google Scholar 

  24. Yang, Bo.; Zhang, Ao.; Bai, Y.; Zhang, K.; Li, He.: Development and simulation of magnetorheological damper for segment erector vibration control. Trans. Can. Soc. Mech. Engineering 43, 237–247 (2019)

    Article  Google Scholar 

  25. Parlak, Z.; Engin, T.; Çallı, I.: Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field. Mechatronics 22(6), 890–903 (2012). https://doi.org/10.1016/j.mechatronics.2012.05.007

    Article  Google Scholar 

  26. Margolis, D.L.: The response of active and semi-active suspensions to realistic feedback signals. Veh. Syst. Dyn. 11, 267–282 (1982)

    Article  Google Scholar 

  27. Decarlo, R.A.; Zak, S.H.; Matthews, G.P.: Variable structure control of nonlinear multivariable systems: a tutorial. Proc. IEEE 76(3), 212–232 (1988)

    Article  Google Scholar 

  28. Kasemi, B.; Muthalif, A.G.A.; Rashid, M.M.; Fathima, S.: Fuzzy-PID controller for semi-active vibration control using magnetorheological fluid damper. Procedia Eng. 41, 1221–1227 (2012)

    Article  Google Scholar 

  29. Salem, M.H.; Anany, M.N.; EI-habrouk, M.; Rezeka, S.F.: Control of dynamic vibration absorber by magnetorehological damper. Int. Rev. Mech. Eng. (IRME) 7, 81–90 (2013)

    Google Scholar 

  30. Wani, Z.R.; Tantray, M.: Study on integrated response-based adaptive strategies for control and placement optimization of multiple magneto-rheological dampers-controlled structure under seismic excitations. J. Vib. Control 0, 1–15 (2021)

    Google Scholar 

  31. Felix-Herran, L.C.; Mehdib, D.; Ramírez-Mendoza, R.A.; de Rodríguez-Ortiz, J.; Soto, R.: H2 control of a one-quarter semi-active ground vehicle suspension. J. Appl. Res. Technol. 14, 173–183 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajkumar G. Kumbhar.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests or personal relationships.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumbhar, M.B., Desavale, R.G. & Kumbhar, S.G. Dynamic Characterization of MR Fluid-Based Dynamic Vibration Absorber. Arab J Sci Eng 48, 11363–11377 (2023). https://doi.org/10.1007/s13369-022-07410-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07410-3

Keywords

Navigation