Skip to main content
Log in

Effect of Inner Reductant Addition and Laying on Carbothermic Reduction Process of Laterite Nickel Ore/Coal Composite Briquette

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Strict environmental regulations have made on many industrial sectors to try and reduce CO2 gas production, including the nickel and ferronickel manufacturing industries. One of the promising technologies in reducing CO2 emissions is carbothermic reduction using a lower operating temperature than smelting process. This study aims to study the effects of adding and laying reductant (coal) on composite briquette. By using the same C/O molar ratio, this research tries to study the effects of inner and outer coal on the carbothermic reduction of laterite nickel ore. The carbothermal reduction process was carried out at 700 °C for 2 h and then followed by heating at 1400 °C for 6 h. Then, the ferronickel was separated from the impurities by magnetic separation. Several tests and calculations were carried out to assess process performance, such as energy dispersive X-ray, scanning electron microscope, X-ray diffractometer, calculation of nickel recovery, calculation of selectivity factor, and calculation of separation efficiency. The result showed that inner and outer coal in the carbothermic reduction process of laterite nickel ore can affect the selectivity performance of nickel. The best nickel recovery (93%) was obtained when using 70% inner coal and 30% outer coal. On the other hand, the best nickel content (13.99%) was achieved when using 90% inner coal and 10% outer coal. The ferronickel product obtained from this process can be applied as a raw material in stainless steel making or further processed into nickel sulfate powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sohn, H.Y.: Energy con energy consumption and CO2 emissions in ironmaking and development of a novel flash technology. Metals 10(54), 1–22 (2020). https://doi.org/10.3390/met10010054

    Article  Google Scholar 

  2. Zhang, X.; Jiao, K.; Zhang, J.; Guo, Z.: A review on low carbon emissions projects of steel industry in the world. J. Clean. Prod. 306(127259), 1–11 (2021). https://doi.org/10.1016/j.jclepro.2021.127259

    Article  Google Scholar 

  3. Sommerfeld, M.; Friedrich, B.: Replacing fossil carbon in the production of ferroalloys with a focus on bio-based carbon: a review. Minerals 11(1286), 1–39 (2021). https://doi.org/10.3390/min11111286

    Article  Google Scholar 

  4. Guohua, Y.; Elshkaki, A.; Xiao, X.: Dynamic analysis of future nickel demand, supply, and associated materials, energy, water, and carbon emissions in China. Resour. Policy 74, 102432 (2021). https://doi.org/10.1016/j.resourpol.2021.102432

    Article  Google Scholar 

  5. LME (London Metal Exchange), 2021, https://www.lme.com/Metals/Non-ferrous/LME-Nickel#Trading+day+summary. Accessed 20 Dec 2021

  6. Pintowantoro, S.; Panggabean, P.C.; Setiyorini, Y.; et al.: Smelting and selective reduction of limonitic laterite ore in mini blast furnace. J. Inst. Eng. India Ser. D (2022). https://doi.org/10.1007/s40033-022-00348-8

  7. Rechberger, K.; Spanlang, A.; Conde, A.S.; Wolfmeir, H.; Harris, C.: Green hydrogen-based direct reduction for low-carbon steelmaking. Steel Res. Int. 91(2000110), 1–10 (2020). https://doi.org/10.1002/srin.202000110

    Article  Google Scholar 

  8. Abdul, F.; Pintowantoro, S.; Purnamasari, A.: Direct reduction of nickel laterite limonitic ore using a coal-dolomite mixture bed and Na2SO4 as a selective agent. J. Chem. Technol. Metall. 55, 103–110 (2020)

    Google Scholar 

  9. Abdul, F.; Pintowantoro, S.; Hidayatullah, A.B.: Analysis of cylindrical briquette dimension on total iron content and the degree of metallization in direct reduction process of iron ore and iron sand mixture. Mater. Sci. Forum 964, 19–25 (2019). https://doi.org/10.4028/www.scientific.net/msf.964.19

    Article  Google Scholar 

  10. Abdul, F.; Pintowantoro, S.; Kawigraha, A.; Nursidiq, A.: Analysis of holding time variations to Ni and Fe content and morphology in nickel laterite limonitic reduction process by using coal-dolomite bed. AIP Conf. Proc. 1945, 020033 (2018). https://doi.org/10.1063/1.5030255

    Article  Google Scholar 

  11. Sun, N.; Wang, Z.; Guo, Z.; Zhang, G.; Qi, T.: Effects of temperature, CO content, and reduction time on the selective reduction of a limonitic laterite ore. Miner. Eng. 174(107277), 1–11 (2021). https://doi.org/10.1016/j.mineng.2021.107277

    Article  Google Scholar 

  12. Guo, X.; Li, Z.; Wang, Z.; Sun, T.: Effect of co-reduction conditions of nickel laterite ore and red mud on ferronickel particle size characteristics and grindability of carbothermic reduction products. Minerals 12(3), 357 (2022). https://doi.org/10.3390/min12030357

    Article  Google Scholar 

  13. Suharno, B.; Ilman, N.P.; Shofi, A.; Ferdian, D.; Nurjaman, F.: Study of low-grade nickel laterite processing using palm shell charcoal as reductant. Mater. Sci. Forum 1000, 436–446 (2020). https://doi.org/10.4028/www.scientific.net/MSF.1000.436

    Article  Google Scholar 

  14. Widyartha, B.; Setiyorini, Y.; Abdul, F., et al.: Effective beneficiation of low content nickel ferrous laterite using fluxing agent through Na2SO4 selective reduction. Materialwiss. Werkstofftech. 51, 750–757 (2020). https://doi.org/10.1002/MAWE.202000007

    Article  Google Scholar 

  15. Liu, S.; Yang, C.; Yang, S.; Yu, Z.; Wang, Z.; Yan, K.; Li, J.; Liu, X.: A robust recovery of Ni from laterite ore promoted by sodium thiosulfate through hydrogen-thermal reduction. Front. Chem. 9, 704012 (2021). https://doi.org/10.3389/fchem.2021.704012

    Article  Google Scholar 

  16. Xiao, J.; Xiong, W.; Zou, K.: Extraction of nickel from magnesia-nickel silicate ore. J. Sustain. Metall. 7(2), 642–652 (2021). https://doi.org/10.1007/S40831-021-00364-0

    Article  Google Scholar 

  17. Suharno, B.; Nurjaman, F.; Ramadini, C.; Shofi, A.: Additives in selective reduction of lateritic nickel ores: sodium sulfate sodium carbonate, and sodium chloride. Min. Metall. Explor. 38, 2145–2159 (2021). https://doi.org/10.1007/s42461-021-00456-1

    Article  Google Scholar 

  18. Jiang, X.; He, L.; Wang, L., et al.: Effects of reducing parameters on the size of ferronickel particles in the reduced laterite nickel ores. Metall. Mater. Trans. B 51, 2653–2662 (2020). https://doi.org/10.1007/s11663-020-01961-2

    Article  Google Scholar 

  19. Nurjaman, F.; Amely, I.; Astuti, W.; Suharno, B.: The effect of ternary basicity (CaO/(Al2O3+SiO2)) on selective reduction of limonitic nickel ore. Advances in Materials and Processing Technologies (2021). https://doi.org/10.1080/2374068X.2021.1949539

    Article  Google Scholar 

  20. Qu, G.; Zhou, S.; Wang, H.; Li, B.; Wei, Y.: Production of ferronickel concentrate from low-grade nickel laterite ore by non-melting reduction magnetic separation process. Metals 9, 1340 (2019). https://doi.org/10.3390/met9121340

    Article  Google Scholar 

  21. Dong, J.; Wei, Y.; Lu, C.; Zhou, S.; Li, B.; Ding, Z.; Wang, C.; Ma, B.: Influence of calcium chloride addition on coal-based reduction roasting of low-nickel garnierite ore. Mater. Trans. 58(8), 1161–1168 (2017). https://doi.org/10.2320/matertrans.M2017086

    Article  Google Scholar 

  22. Pintowantoro, S.; Pasha, R.A.M.; Abdul, F.: Gypsum utilization on selective reduction of limonitic laterite nickel. Results Eng. 12, 100296 (2021). https://doi.org/10.1016/j.rineng.2021.100296

    Article  Google Scholar 

  23. Wills, B.A.; Finch, J.A.: Wills’ minerals processing technology-an introduction to the practical aspects of ore treatment and mineral recovery. In: Wills, B.A.; Finch, J.A. (Eds.) Chapter 1-Introduction, 8th edn, pp. 11–12. Elsevier, Oxford (2015). https://doi.org/10.1016/B978-0-08-097053-0.00001-7

  24. Nokhrina, O.I.; Rozhihina, D.; Hodosov, I.E.: The use of coal in a solid phase reduction of iron oxide. IOP Conf. Ser. Mater. Sci. Eng. 91, 012045 (2015). https://doi.org/10.1088/1757-899X/91/1/012045

    Article  Google Scholar 

  25. Dai, H.; Zhao, H.; Chen, S.; Jiang, B.: A microwave-assisted boudouard reaction: a highly effective reduction of the greenhouse gas CO2 to useful CO feedstock with semi-coke. Molecules 26(6), 1507 (2021). https://doi.org/10.3390/molecules26061507

    Article  Google Scholar 

  26. Donskoi, E.; Olivares, R.I.; McElwain, D.L.S.; Wibberley, L.J.: Experimental study of coal based direct reduction in iron ore/coal composite pellets in a one layer bed under nonisothermal, asymmetric heating. Ironmak. Steelmak. 33(1), 24–28 (2006). https://doi.org/10.1080/01496395.2016.1166134

    Article  Google Scholar 

  27. Jiang, X.; He, L.; Xiang, D.; An, H.; Shen, F.: Effects of reducing parameters on the size of ferronickel particles in the reduced laterite nickel ores. Metall. Mater. Trans. B 51, 2653–2662 (2020). https://doi.org/10.1007/s11663-020-01961-2

    Article  Google Scholar 

  28. Li, G.; Zhi, Q.; Rao, M.; Zhang, Y.; Cai, W.; Jiang, T.: Effect of basicity on sintering behavior of saprolitic nickel laterite in air. Powder Technol. 249, 212–219 (2013). https://doi.org/10.1016/j.powtec.2013.08.018

    Article  Google Scholar 

  29. Mills, K.C.; Yuan, L.; Jones, R.T.: Estimating the physical properties of slags. J. S. Afr. Inst. Min. Metall. 111(10), 649–658 (2011)

    Google Scholar 

  30. Lv, X.; Lv, W.; Liu, M.; You, Z.; Lv, X.; Bai, C.: Effect of sodium sulfate on preparation of ferronickel from nickel laterite by carbothermal reduction. ISIJ Inter. 58(5), 799–807 (2018). https://doi.org/10.2355/isijinternational.ISIJINT-2017-611

    Article  Google Scholar 

  31. Jiang, M.; Sun, T.; Liu, Z.; Kou, J.; Liu, N.; Zhang, S.: Mechanism of sodium sulfate in promoting selective reduction of nickel laterite ore during reduction roasting process. Int. J. Miner. Process. 123, 32–38 (2013). https://doi.org/10.1016/j.minpro.2013.04.005

    Article  Google Scholar 

  32. Rao, M.; Li, G.; Zhang, X.; Luo, J.; Peng, Z.; Jiang, T.: Reductive roasting of nickel laterite ore with sodium sulphate for Fe-Ni production. Part II: phase transformation and grain growth. Sep. Sci. Technol. 51(10), 1727–1735 (2016). https://doi.org/10.1080/01496395.2016.1166134

    Article  Google Scholar 

  33. Zhang, J.; Gao, L.; He, Z.; Hou, X.; Zhan, W.; Pang, Q.: Separation and recovery of iron and nickel from low-grade laterite nickel ore by microwave carbothermic reduction roasting. J. Market. Res. 9(6), 12223–12235 (2020). https://doi.org/10.1016/j.jmrt.2020.08.036

    Article  Google Scholar 

  34. Tian, H.; Guo, Z.; Zhan, R., et al.: Upgrade of nickel and iron from low-grade nickel laterite by improving direct reduction-magnetic separation process. J. Iron Steel Res. Int. (2021). https://doi.org/10.1007/s42243-021-00646-7

    Article  Google Scholar 

  35. Tian, H.; Guo, Z.; Zhan, R.; Pan, J.; Zhu, D.; Yang, C.; Pan, L.: Effective and economical treatment of low-grade nickel laterite by a duplex process of direct reduction-magnetic separation & rotary kiln-electric furnace and its industrial application. Powder Technol. 394, 120–132 (2021). https://doi.org/10.1016/j.powtec.2021.08.043

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their highest appreciation to the Ministry of Education, Culture, Research, and Technology of the Republic of Indonesia, which has supported the funding of this research through the Penelitian Terapan Scheme with a research contract number: 3/E1/KP.PTNBH/2021 and 992/PKS/ITS/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungging Pintowantoro.

Ethics declarations

Conflict of interest

The authors state that in the implementation of this research, there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdul, F., Devalini, P.M., Setiyorini, Y. et al. Effect of Inner Reductant Addition and Laying on Carbothermic Reduction Process of Laterite Nickel Ore/Coal Composite Briquette. Arab J Sci Eng 48, 11285–11294 (2023). https://doi.org/10.1007/s13369-022-07402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07402-3

Keywords

Navigation