Skip to main content

Advertisement

Log in

Interleaved Switched-Inductor Boost Converter for Photovoltaic Energy Application

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study proposes a two-phase switched-inductor DC–DC converter with a voltage multiplication stage to attain high-voltage gain. The converter is an ideal solution for applications requiring significant voltage gains, such as integrating photovoltaic energy sources to a direct current distribution bus or a microgrid. The structure of the introduced converter is comprised of an interleaved switched-inductor boost stage attached to the voltage multiplier cells stage. The interleaved switched-inductor consists of two switched-inductor phases controlled by two out-of-phase controllable switches. The switched-inductor stage can be fed by single or multiple self-controlled input power sources. The voltage multiplier networks are comprised of diodes and capacitors to raise the converter’s voltage gain. Several advantages are gained using the proposed converter such as, reduced potential stress on switching elements, the continuity of the source current, and the modularity of both the switched-inductor and the voltage multiplier stages. In addition, the modularity of the proposed converter improves the scalability, in which the voltage gain can be increased by connecting additional voltage multipliers or switched-inductor cells. The theory of operations of the presented converter, component selection, and steady-state calculations are explained in detail. The simulation results support the theoretical investigation and verify the hardware implementation of a 400 W experimental prototype to convert 20.0 V from an input voltage source to a 400.0 V output load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Blaabjerg, F.; Ma, K.; Yang, Y.: Power electronics for renewable energy systems-status and trends. In: 2014 8th International Conference on Integrated Power Systems (CIPS), pp. 1–11, VDE (2014)

  2. Harb, S.; Kedia, M.; Zhang, H.; Balog, R.S.: Microinverter and string inverter grid-connected photovoltaic system: a comprehensive study. In: Photovoltaic Specialists Conference (PVSC), 2013 IEEE 39th, pp. 2885–2890, IEEE (2013)

  3. Sher, H.A.; Addoweesh, K.E.: Micro-inverters-promising solutions in solar photovoltaics. Energy Sustain. Dev. 16(4), 389–400 (2012)

    Article  Google Scholar 

  4. Zheng, H.; Li, S.; Challoo, R.; Proano, J.: Shading and bypass diode impacts to energy extraction of pv arrays under different converter configurations. Renew. Energy 68, 58–66 (2014)

    Article  Google Scholar 

  5. Dhople, S.V.; Ehlmann, J.L.; Davoudi, A.; Chapman, P.L.: Multiple-input boost converter to minimize power losses due to partial shading in photovoltaic modules. In: Energy Conversion Congress and Exposition (ECCE), 2010 IEEE, pp. 2633–2636, IEEE (2010)

  6. Reinoso, C.R.S.; Milone, D.H.; Buitrago, R.H.: Simulation of photovoltaic centrals with dynamic shading. Appl. Energy 103, 278–289 (2013)

    Article  Google Scholar 

  7. Kouro, S.; Leon, J.I.; Vinnikov, D.; Franquelo, L.G.: Grid-connected photovoltaic systems: an overview of recent research and emerging pv converter technology. IEEE Ind. Electron. Mag. 9(1), 47–61 (2015)

    Article  Google Scholar 

  8. Kasper, M.; Ritz, M.; Bortis, D.; Kolar, J.W.: Pv panel-integrated high step-up high efficiency isolated gan dc–dc boost converter. In: Telecommunications Energy Conference ‘Smart Power and Efficiency’ (INTELEC), Proceedings of 2013 35th International, pp. 1–7, VDE (2013)

  9. Bhaskar, M.S.; Ramachandaramurthy, V.K.; Padmanaban, S.; Blaabjerg, F.; Ionel, D.M.; Mitolo, M.; Almakhles, D.: Survey of dc–dc non-isolated topologies for unidirectional power flow in fuel cell vehicles. IEEE Access 8, 178130–178166 (2020)

    Article  Google Scholar 

  10. Alzahrani, A.; Ferdowsi, M.; Shamsi, P.: A family of scalable non-isolated interleaved dc–dc boost converters with voltage multiplier cells. IEEE Access 7, 11707–11721 (2019)

    Article  Google Scholar 

  11. Zhu, L.: A novel soft-commutating isolated boost full-bridge zvs-pwm dc–dc converter for bidirectional high power applications. IEEE Trans. Power Electron. 21(2), 422–429 (2006)

    Article  Google Scholar 

  12. Hong, F.; Li, L.; Wu, Y.; Ji, B.; Zhou, Y.: 1500 v three-level forward converter with phase-shifted control. IET Power Electron. 11(9), 1547–1555 (2018)

    Article  Google Scholar 

  13. Waltrich, G.; Barbi, I.: Modelling, control and realisation of the single-ended forward converter with resonant reset at the secondary side. IET Power Electron. 8(11), 2097–2106 (2015)

    Article  Google Scholar 

  14. Bilsalam, A.; Boonyaroonate, I.; Chunkag, V.: High-voltage gain zero-current switching push-pull resonant converter for small energy sources. IET Power Electron. 9(4), 835–845 (2016)

    Article  Google Scholar 

  15. Andreta, A.G.; Lamorelle, T.; Lembeye, Y.; Kerachev, L.; Sarrafin, F.; Fernando, L.; Villa, L.; Crebier, J.C.: A high efficiency and power density, high step-up, non-isolated dc–dc converter based on multicell approach. In: CIPS 2018; 10th International Conference on Integrated Power Electronics Systems, pp. 1–5, VDE (2018)

  16. Reusch, D.; Biswas, S.; Zhang, Y.: System optimization of a high power density non-isolated intermediate bus converter for 48 v server applications. In: 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2191–2197 (2018)

  17. Martinez, W.; Cortes, C.; Yamamoto, M.; Imaoka, J.; Umetani, K.: Total volume evaluation of high-power density non-isolated dc–dc converters with integrated magnetics for electric vehicles. IET Power Electron. 10(14), 2010–2020 (2017)

    Article  Google Scholar 

  18. Bhaskar, M.S.; Meraj, M.; Iqbal, A.; Padmanaban, S.; Maroti, P.K.; Alammari, R.: High gain transformer-less double-duty-triple-mode dc/dc converter for dc microgrid. Ieee Access 7, 36353–36370 (2019)

    Article  Google Scholar 

  19. Li, F.; Liu, H.; Zhang, C.; Wheeler, P.: Novel high step-up dual switches converter with reduced power device voltage stress for distributed generation system. IET Power Electron. 10(14), 1800–1809 (2017)

    Article  Google Scholar 

  20. Molavi, N.; Adib, E.; Farzanehfard, H.: Soft-switched non-isolated high step-up dc–dc converter with reduced voltage stress. IET Power Electron. 9(8), 1711–1718 (2016)

    Article  Google Scholar 

  21. Khalilzadeh, M.; Abbaszadeh, K.: Non-isolated high step-up dc–dc converter based on coupled inductor with reduced voltage stress. IET Power Electron. 8(11), 2184–2194 (2015)

    Article  Google Scholar 

  22. Nejad, M.L.; Poorali, B.; Adib, E.; Birjandi, A.A.M.: New cascade boost converter with reduced losses. IET Power Electron. 9(6), 1213–1219 (2016)

    Article  Google Scholar 

  23. Cao, Y.; Samavatian, V.; Kaskani, K.; Eshraghi, H.: A novel nonisolated ultra-high-voltage-gain dc–dc converter with low voltage stress. IEEE Trans. Ind. Electron. 64, 2809–2819 (2017)

    Article  Google Scholar 

  24. Lakshmi, M.; Hemamalini, S.: Nonisolated high gain dc–dc converter for dc microgrids. IEEE Trans. Ind. Electron. 65(2), 1205–1212 (2017)

    Article  Google Scholar 

  25. Tang, Y.; Fu, D.; Wang, T.; Xu, Z.: Hybrid switched-inductor converters for high step-up conversion. IEEE Trans. Ind. Electron. 62, 1480–1490 (2015)

    Article  Google Scholar 

  26. Wang, Y.; Jing, W.; Qiu, Y.; Wang, Y.; Deng, X.; Hua, K.; Hu, B.; Xu, D.: Y-source boost a family of y-source dc/dc converter based on switched inductor. IEEE Trans. Ind. Appl. (2018)

  27. Bhaskar, M.S.; Padmanaban, S.; Blaabjerg, F.; Wheeler, P.W.: An improved multistage switched inductor boost converter (improved m-sibc) for renewable energy applications: a key to enhance conversion ratio. In: 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), pp. 1–6, IEEE (2018)

  28. Maroti, P.K.; Padmanaban, S.; Wheeler, P.; Blaabjerg, F.; Rivera, M.: Modified boost with switched inductor different configurational structures for dc–dc converter for renewable application. In: Power Electronics Conference (SPEC), 2017 IEEE Southern, pp. 1–6, IEEE (2017)

  29. de Morais, J.C.S.; Gules, R.; de Morais, J.L.S.; Fernandes, L.G.: Transformerless dc–dc converter with high voltage gain based on a switched-inductor structure applied to photovoltaic systems. In: 2017 Brazilian Power Electronics Conference (COBEP), pp. 1–6 (2017)

  30. Raghavendra, K.V.G.; Zeb, K.; Muthusamy, A.; Krishna, T.; Kumar, S.; Kim, D.-H.; Kim, M.-S.; Cho, H.-G.; Kim, H.-J.: A comprehensive review of dc–dc converter topologies and modulation strategies with recent advances in solar photovoltaic systems. Electronics 9(1), 31 (2020)

    Article  Google Scholar 

  31. Jiang, W.; Chincholkar, S.H.; Chan, C.-Y.: Improved output feedback controller design for the super-lift re-lift luo converter. IET Power Electron. 10(10), 1147–1155 (2017)

    Article  Google Scholar 

  32. Alzahrani, A.; Shamsi, P.; Ferdowsi, M.: A novel non-isolated high-gain dc–dc boost converter. In: Power Symposium (NAPS), 2017 North American, pp. 1–6, IEEE (2017)

  33. Müller, L.; Kimball, J.W.: High gain dc–dc converter based on the Cockcroft–Walton multiplier. IEEE Trans. Power Electron. 31(9), 6405–6415 (2016)

    Article  Google Scholar 

  34. Alzahrani, A.; Ferdowsi, M.; Shamsi, P.: High-voltage-gain dc–dc step-up converter with bifold Dickson voltage multiplier cells. IEEE Trans. Power Electron. 34(10), 9732–9742 (2019)

  35. Varesi, K.; Hassanpour, N.; Saeidabadi, S.: Novel high step-up dc-dc converter with increased voltage gain per devices and continuous input current suitable for dc microgrid applications. Int. J. Circuit Theory Appl. 48(10), 1820–1837 (2020)

    Article  Google Scholar 

  36. Li, W.; Xiang, X.; Li, C.; Li, W.; He, X.: Interleaved high step-up zvt converter with built-in transformer voltage Doubler cell for distributed pv generation system. IEEE Trans. Power Electron. 28(1), 300–313 (2013)

    Article  Google Scholar 

  37. He, L.; Liao, Y.: An advanced current-autobalance high step-up converter with a multicoupled inductor and voltage multiplier for a renewable power generation system. IEEE Trans. Power Electron. 31(10), 6992–7005 (2016)

    MathSciNet  Google Scholar 

  38. Zafrany, I.; Ben-Yaakov, S.: Generalized switched inductor model (gsim): accounting for conduction losses. IEEE Trans. Aerosp. Electron. Syst. 38(2), 681–687 (2002)

    Article  Google Scholar 

  39. Venkatachalam, K.; Sullivan, C.; Abdallah, T.; Tacca, H.: Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters. In: 2002 IEEE Workshop on Computers in Power Electronics, 2002. Proceedings., pp. 36–41 (2002)

  40. Wang, R.; Wang, F.; Boroyevich, D.; Burgos, R.; Lai, R.; Ning, P.; Rajashekara, K.: A high power density single-phase pwm rectifier with active ripple energy storage. IEEE Trans. Power Electron. 26(5), 1430–1443 (2010)

    Article  Google Scholar 

  41. Kazimierczuk, M.K.: High-Frequency Magnetic Components. Wiley, Hoboken (2009)

    Google Scholar 

  42. Shen, Z.J.; Xiong, Y.; Cheng, X.; Fu, Y.; Kumar, P.: Power mosfet switching loss analysis: a new insight. In: Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting, vol. 3, pp. 1438–1442, IEEE (2006)

  43. Xiong, Y.; Sun, S.; Jia, H.; Shea, P.; Shen, Z.J.: New physical insights on power mosfet switching losses. IEEE Trans. Power Electron. 24(2), 525–531 (2009)

    Article  Google Scholar 

  44. Li, X.; Zhang, L.; Guo, S.; Lei, Y.; Huang, A.Q.; Zhang, B.: Understanding switching losses in sic mosfet: toward lossless switching. In: 2015 IEEE 3rd Workshop on Wide Bandgap Power Devices and Applications (WiPDA), pp. 257–262, IEEE (2015)

  45. Yamashita, N.; Murakami, N.; Yachi, T.: Conduction power loss in mosfet synchronous rectifier with parallel-connected Schottky barrier diode. IEEE Trans. Power Electron. 13(4), 667–673 (1998)

    Article  Google Scholar 

  46. Evzelman, M.; Ben-Yaakov, S.: Average-current-based conduction losses model of switched capacitor converters. IEEE Trans. Power Electron. 28(7), 3341–3352 (2012)

    Article  Google Scholar 

  47. Seeman, M.D.; Sanders, S.R.: Analysis and optimization of switched-capacitor dc–dc converters. IEEE Trans. Power Electron. 23(2), 841–851 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The author is thankful to the Deanship of Scientific Research at Najran University for funding this work under the General Research Funding program Grant Code (NU/-/SERC/10/530).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Alzahrani.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzahrani, A. Interleaved Switched-Inductor Boost Converter for Photovoltaic Energy Application. Arab J Sci Eng 48, 6419–6430 (2023). https://doi.org/10.1007/s13369-022-07392-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07392-2

Keywords

Navigation