Skip to main content

Advertisement

Log in

Solar PV-Supported Multi-functional UPQC for Three-Phase System Using VCO-less-FLL

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This paper demonstrates a three-phase multi-functional unified power quality conditioner (MF-UPQC) powered by solar photovoltaic (PV) using a voltage-controlled oscillator-less frequency-locked loop (VCO-less-FLL). The proposed system consists of an active shunt and series compensator linked with a shared DC link. The proposed MF-UPQC system offers clean energy and power quality (PQ) enhancement features such as harmonic elimination and balancing of source current, reactive power compensation, and mitigation of source voltage sag/swell/distortion. Furthermore, the VCO-less-FLL is proposed in this paper for proper grid synchronization under constant and changing frequency conditions. Results obtained from MATLAB/Simulink and a real-time simulator are presented to assess the performance of the MF-UPQC for various disturbances in source voltage (sag/swell/distortion) with dynamic nonlinear loading and variation in solar irradiance.The results show that the source current is balanced and sinusoidal, while the load voltage is held constant against the supply voltage variation. In addition to the mentioned conditions, the system was also tested under a supply frequency variation of 2Hz and found that the VCO-less-FLL continued the grid synchronization without altering the system operation. The system follows total harmonic distortion (THD) standards set by IEEE-519 and IEEE-1159 for source current and load voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Abbreviations

D:

Duty cycle

DG:

Distributed generator

\(e_\text {f}\) :

Frequency error component

\(e_{v \alpha ,\beta }\) :

Error \(\alpha \), \(\beta \) voltage component in VCO-less-FLL

F :

Source frequency

ISCT:

Instantaneous symmetrical component theory

INC:

Incremental conductance

IRPT:

Instantaneous reactive power theory

\(I_\text {s}\) :

Source current

\(I_\text {L}\) :

Load current

\(I_{\text {SH}}\) :

Shunt converter current

\(I_\text {pv}\) :

PV array current

\(I_\text {r}\) :

Irradiance

\(k_\text {p}\) :

Proportional gain

\(k_\text {i}\) :

Integral gain

LF:

Loop filter

MF-UPQC:

Multi-functional unified power quality conditioner

PI:

Proportional–integral

PLL:

Phase-locked loop

PQ:

Power quality

PCC:

Point of common coupling

\(P_\text {pv}\) :

Solar PV power

SRF:

Synchronous reference frame

SOGI-FLL:

Second-order generation integrator–frequency-locked loop

THD:

Total harmonic distortion

VCO-less-FLL:

Voltage-controlled oscillator-less frequency-locked loop

\(V^{*}_{\text {L},a/b/c}\) :

Reference load voltage

\(V_{1\text {L}\alpha }\) :

\(\alpha \) component of fundamental output load voltage

\(V_{1\text {L}\beta }\) :

\(\alpha \) component of fundamental output load voltage

\(V_\text {s}\) :

Source voltage

\(V_\text {L}\) :

Load voltage

\(V_\text {se}\) :

Series converter voltage

\(V_\text {DC}\) :

DC link voltage

\(V^{*}_\text {DC}\) :

Reference DC link voltage

\(V_\text {pv}\) :

PV array voltage

References

  1. Singh, B.; Chandra, A.; Al-Haddad, K.: Power Quality: Problems and Mitigation Techniques. John Wiley & Sons, New Jersey (2014)

    Google Scholar 

  2. Bollen, M.H.: Understanding power quality problems. In: Voltage Sags and Interruptions. IEEE press, (2000)

  3. Omar, R.; Rahim, N.: New configuration of a three phase dynamic voltage restorer (dvr) for voltage disturbances mitigation in electrical distribution system. Arab. J. Sci. Eng. 37(8), 2205–2220 (2012)

    Article  Google Scholar 

  4. Krama, A.; Zellouma, L.; Benaissa, A.; Rabhi, B.; Bouzidi, M.; Benkhoris, M.F.: Design and experimental investigation of predictive direct power control of three-phase shunt active filter with space vector modulation using anti-windup pi controller optimized by pso. Arab. J. Sci. Eng. 44(8), 6741–6755 (2019)

    Article  Google Scholar 

  5. Choi, W.; Lee, W.; Han, D.; Sarlioglu, B.: New configuration of multifunctional grid-connected inverter to improve both current-based and voltage-based power quality. IEEE Trans. Ind. Appl. 54(6), 6374–6382 (2018)

    Article  Google Scholar 

  6. Khadkikar, V.: Enhancing electric power quality using upqc: a comprehensive overview. IEEE Trans. Power Electron. 27(5), 2284–2297 (2011)

    Article  Google Scholar 

  7. Koroglu, T.; Tan, A.; Savrun, M.M.; Cuma, M.U.; Bayindir, K.C.; Tumay, M.: Implementation of a novel hybrid upqc topology endowed with an isolated bidirectional dc-dc converter at dc link. IEEE J. Emerg. Selected Topics in Power Electron. 8(3), 2733–2746 (2019)

    Article  Google Scholar 

  8. Kaushal, J.; Basak, P.: Power quality control based on voltage sag/swell, unbalancing, frequency, thd and power factor using artificial neural network in pv integrated ac microgrid. Sustain. Energy, Grids and Netw. 23, 100365 (2020)

    Article  Google Scholar 

  9. Dash, S.K.; Ray, P.K.: Design and modeling of single-phase pv-upqc scheme for power quality improvement utilizing a novel notch filter-based control algorithm: an experimental approach. Arab. J. Sci. Eng. 43(6), 3083–3102 (2018)

    Article  Google Scholar 

  10. Sukumaran, J., Thomas, A., Bhattacharya, A.: A reduced voltage rated unified power quality conditioner for harmonic compensations. In: 2016 IEEE 7th Power India International Conference (PIICON), pp. 1–5 (2016). IEEE

  11. Patel, A., Chaturvedi, P.: Performance of srf-uvtg based upqc dg for integration of solar pv with non-linear loads. In: 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), pp. 1–5 (2016). IEEE

  12. Kumar, A.S., Prakash, K.: Analysis of split capacitor based d-statcom with lcl filter using instantaneous symmetrical components theory. In: 2016 2nd International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics (AEEICB), pp. 103–108 (2016). IEEE

  13. Akagi, H.; Watanabe, E.H.; Aredes, M.: Instantaneous Power Theory and Applications to Power Conditioning. John Wiley & Sons, New Jersey (2017)

    Book  Google Scholar 

  14. Kumar, A.; Garg, R.; Mahajan, P.: Modified synchronous reference frame control of solar photovoltaic-based microgrid for power quality improvement. Arab. J. Sci. Eng. 46(2), 1001–1018 (2021)

    Article  Google Scholar 

  15. Al-Shetwi, A.Q.; Hannan, M.; Jern, K.P.; Mansur, M.; Mahlia, T.: Grid-connected renewable energy sources: review of the recent integration requirements and control methods. J. Clean. Prod. 253, 119831 (2020)

    Article  Google Scholar 

  16. Dheeban, S., Muthu Selvan, N.: Anfis-based power quality improvement by photovoltaic integrated upqc at distribution system. IETE J. Res., 1–19 (2021)

  17. Devi, S.C.; Singh, B.; Devassy, S.: Modified generalised integrator based control strategy for solar pv fed upqc enabling power quality improvement. IET Gen. Trans. Distribut. 14(16), 3127–3138 (2020)

    Article  Google Scholar 

  18. Devassy, S.; Singh, B.: Design and performance analysis of three-phase solar pv integrated upqc. IEEE Trans. Ind. Appl. 54(1), 73–81 (2017)

    Article  Google Scholar 

  19. Devassy, Sachin; Singh, Bhim: Modified pq-theory-based control of solar-pv-integrated upqc-s. IEEE Trans. Ind. Appl. 53(5), 5031–5040 (2017)

    Article  Google Scholar 

  20. Dash, S.K.; Ray, P.K.: Power quality improvement utilizing pv fed unified power quality conditioner based on uv-pi and pr-r controller. CPSS Trans. Power Electron. Appl. 3(3), 243–253 (2018)

    Article  Google Scholar 

  21. Dash, Santanu Kumar; Ray, Pravat Kumar: Novel pv-tied upqc topology based on a new model reference control scheme and integral plus sliding mode dc-link controller. Int. Trans. Electric. Energy Syst. 28(7), 2564 (2018)

    Article  Google Scholar 

  22. Dash, S.K.; Ray, P.K.: Performance enhancement of pv-fed unified power quality conditioner for power quality improvement using jaya optimized control philosophy. Arab. J. Sci. Eng. 44(3), 2115–2129 (2019)

    Article  Google Scholar 

  23. Patel, A.; Yadav, S.K.; Mathur, H.D.; Bhanot, S.; Bansal, R.C.: Optimum sizing of pv based upqc-dg with improved power angle control. Electric. Power Syst. Res. 182, 106259 (2020)

    Article  Google Scholar 

  24. Fallah, M.; Modarresi, J.; Madadi Kojabadi, H.; Chang, L.; Guerrero, J.M.: A modified indirect extraction method for a single-phase shunt active power filter with smaller dc-link capacitor size. Sustain. Energy Technol. Assess. 45, 101039 (2021). https://doi.org/10.1016/j.seta.2021.101039

    Article  Google Scholar 

  25. Golestan, S.; Guerrero, J.M.; Vasquez, J.C.: Three-phase plls: a review of recent advances. IEEE Trans. Power Electron. 32(3), 1894–1907 (2017). https://doi.org/10.1109/TPEL.2016.2565642

    Article  Google Scholar 

  26. Kesler, M.; Ozdemir, E.: Synchronous-reference-frame-based control method for upqc under unbalanced and distorted load conditions. IEEE Trans. Industr. Electron. 58(9), 3967–3975 (2011). https://doi.org/10.1109/TIE.2010.2100330

    Article  Google Scholar 

  27. Hsieh, G.-C.; Hung, J.C.: Phase-locked loop techniques a survey. IEEE Trans. Ind. Electron. 43(6), 609–615 (1996). https://doi.org/10.1109/41.544547

    Article  Google Scholar 

  28. Rauf, A.M.; Khadkikar, V.: An enhanced voltage sag compensation scheme for dynamic voltage restorer. IEEE Trans. Industr. Electron. 62(5), 2683–2692 (2014)

    Article  Google Scholar 

  29. Sadigh, A.K., Smedley, K.: Review of voltage compensation methods in dynamic voltage restorer (dvr). In: 2012 IEEE Power and Energy Society General Meeting, pp. 1–8 (2012). IEEE

  30. Dubey, A.K., Mishra, J.P., Kumar, A.: Modified ccf based shunt active power filter operation with dead-band elimination for effective harmonic and unbalance compensation in 3-phase 3-wire system. IEEE Transactions on Power Delivery, 1–1 (2021). https://doi.org/10.1109/TPWRD.2021.3104828

  31. Alok Kumar Dubey, Mishra, J.P., Kumar, A.: Performance improvement of shunt active power filter under variable grid frequency condition using complex coefficient filter-frequency locked loop. International Journal of Circuit Theory and Applications 49(4), 1164–1181 (2021) https://onlinelibrary.wiley.com/doi/pdf/10.1002/cta.2920. https://doi.org/10.1002/cta.2920

  32. Geddada, N.; Mishra, M.K.; Kumar, M.M.: Srf based current controller using pi and hc regulators for dstatcom with spwm switching. Int. J. Electric. Power Energy Syst. 67, 87–100 (2015)

    Article  Google Scholar 

  33. Cunha, R.; Inomoto, R.; Altuna, J.; Costa, F.; Di Santo, S.; Sguarezi Filho, A.: Constant switching frequency finite control set model predictive control applied to the boost converter of a photovoltaic system. Sol. Energy 189, 57–66 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish A. Dongre.

Appendix A Simulation Parameters

Appendix A Simulation Parameters

PV panel: \(P_{PV}=21KW\),\(N_\text {series}=12\), \(N_\text {parallel}=8\), \(V_{oc}=36.3 V\), \(I_{mp}=7.35A\), \(V_{mp}=29V\), \(I_{sc}=7.84 A\); shunt and series interfacing inductors: \(L_{sh}=L_{se}=5mH\) ; DC link: \(V_{DC}=700V\), \(C_{DC}=6000 \mu F \) ; boost converter: \(L=12 mH\); source voltage: 415V, 50Hz; impedance of source: \(R_s=0.05 \Omega \), \(L_s=0.05 mH\); rectifier load (three-phase): \(R=20 \Omega \) , \(L=15 mH\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dongre, A.A., Dubey, A.K. & Mishra, J.P. Solar PV-Supported Multi-functional UPQC for Three-Phase System Using VCO-less-FLL. Arab J Sci Eng 48, 6341–6359 (2023). https://doi.org/10.1007/s13369-022-07378-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07378-0

Keywords

Navigation