Skip to main content
Log in

Transient Conjugate Heat Transfer Analysis of a Cylindrical Pin Fin Made by Functionally Graded Material Embedded in the Turbulent Flow

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, a transient conjugate heat transfer analysis of a wall-mounted finite-height cylindrical pin fin with H/D = 3 made by functionally graded material (FGM) embedded in the turbulent flow is numerically presented by means of the finite volume approach. Considerations are carried out for a constant Reynolds number of 30,000 based on the fin diameter and free-stream velocity. For the FGM fin, two linearly inward and outward conductivity variations under two various inhomogeneity indices of 0.4 and 0.8 are tested and the obtained results are validated against the available data for the fin with homogeneous material (H.M). It was found that the FGM fin with inward conductivity variation and β = 0.8 develops minimum and maximum temperature at the fin-base and fin tip, respectively. On the other hand, the minimum and maximum temperature gradients along the fin axis occur for FGM fin with inward conductivity variation having β = 0.8 and H.M fins, respectively. Finally, it is revealed that the FGM fin with inward conductivity variation and β = 0.8 and H.M fin provide maximum and minimum heat transfer rates with approaching turbulent flow, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Abbreviations

\(A\) :

Area

\(C_{{\text{D}}}\) :

Drag coefficient

\(c_{{\text{p}}}\) :

Specific heat

\(C_{{\text{p}}}\) :

Pressure coefficient

\(D\) :

Diameter of cylindrical pin fin

\(F_{{\text{D}}}\) :

Drag force

\(H\) :

Height of cylindrical pin fin

\(k\) :

Conductivity

\(k_{0}\) :

Conductivity of homogeneous material

\(n\) :

Normal vector

\(p\) :

Pressure

\(p_{\infty }\) :

Free-stream pressure

\(q^{\prime\prime}\) :

Heat flux

\({\text{Re}}\) :

Reynolds number

\(t\) :

Time

\(\Delta t\) :

Time step

\(T\) :

Temperature

\(T_{\infty }\) :

Free-stream temperature

\(T^{*}\) :

Non-dimensional flow time

u :

Streamwise velocity

\(U_{\infty }\) :

Free-stream velocity

\(v\) :

Lateral velocity

\(w\) :

Spanwise velocity

\(x\) :

Streamwise coordinate

\(y\) :

Lateral coordinate

\(z\) :

Spanwise coordinate

\(\alpha\) :

Angular location

\(\beta\) :

Inhomogeneity index

\(\theta\) :

Non-dimensional temperature

\(\rho\) :

Density

\(\tau\) :

Non-dimensional time step

\(\nu\) :

Dynamic viscosity

\(f\) :

Fluid

\(s\) :

Solid

\(w\) :

Wall

\(-\) :

Time-averaged

\({\text{FGM}}\) :

Functionally graded material

\({\text{H}}.{\text{M}}\) :

Homogeneous material

References

  1. Bai, W.; Chen, W.; Yang, L.; Chyu, M.K.: Numerical investigation on heat transfer and pressure drop of pin-fin array under the influence of rib turbulators induced vortices. Int. J. Heat Mass Transf. 129, 735–745 (2019)

    Google Scholar 

  2. Ambreen, T.; Saleem, A.; Park, C.W.: Pin-fin shape-dependent heat transfer and fluid flow characteristics of water- and nanofluid-cooled micropin-fin heat sinks: square, circular and triangular fin cross-sections. Appl. Therm. Eng. 158, 113781 (2019)

    Google Scholar 

  3. Alam, M.W.; Bhattacharyya, S.; Souayeh, B.; Dey, K.; Hammami, F.; Rahimi-Gorji, M.; Biswas, R.: CPU heat sink cooling by triangular shape micro-pin-fin: numerical study. Int. Commun. Heat Mass Transf. 112, 104455 (2020)

    Google Scholar 

  4. Shim, M.; Ha, M.Y.; Min, J.K.: A numerical study of the mixed convection around slanted-pin fins on a hot plate in vertical and inclined channels. Int. Commun. Heat Mass Transf. 118, 104878 (2020)

    Google Scholar 

  5. Peltonen, P.; Saari, K.; Kukko, K.; Vuorinen, V.; Partanen, J.: Large-Eddy simulation of local heat transfer in plate and pin fin heat exchangers confined in a pipe flow. Int. J. Heat Mass Transf. 134, 641–655 (2019)

    Google Scholar 

  6. Saha, A.K.; Chanda, S.: Fully-developed natural convection in a periodic array of pin-fins. Int. J. Therm. Sci. 137, 325–336 (2019)

    Google Scholar 

  7. Karami, M.; Tashakor, S.; Afsari, A.; Hashemi-Tilehnoee, M.: Effect of the baffle on the performance of a micro pin fin heat sink. Therm. Sci. Eng. Prog. 14, 100417 (2019)

    Google Scholar 

  8. Bahiraei, M.; Heshmatian, S.; Goodarzi, M.; Moayedi, H.: CFD analysis of employing a novel ecofriendly nanofluid in a miniature pin fin heat sink for cooling of electronic components: effect of different configurations. Adv. Powder Technol. 30(11), 2503–2516 (2019)

    Google Scholar 

  9. Choudhary, V.; Kumar, M.; Patil, A.: Experimental investigation of enhanced performance of pin fin heat sink with wings. Appl. Therm. Eng. 155, 546–562 (2019)

    Google Scholar 

  10. Hung, S.C.; Huang, S.C.; Liu, Y.H.: Effect of nonuniform pin size on heat transfer in a rotating rectangular channel with pin-fin arrays. Appl. Therm. Eng. 163, 114393 (2019)

    Google Scholar 

  11. Yabo, W.; Kai, Z.; Zhou, C.; Jie, W.: Effects of the location of the inlet and outlet on heat transfer performance in pin fin CPU heat sink. Appl. Therm. Eng. 151, 506–513 (2019)

    Google Scholar 

  12. Pattenden, R.J.; Turnock, S.R.; Zhang, X.: Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane. Exp. Fluids 39(1), 10–21 (2005)

    Google Scholar 

  13. Beitel, A.; Heng, H.; Sumner, D.: The effect of aspect ratio on the aerodynamic forces and bending moment for a surface-mounted finite-height cylinder. J. Wind Eng. Ind. Aerodyn. 186, 204–213 (2019)

    Google Scholar 

  14. Afgan, I.; Moulinec, C.; Prosser, R.; Laurence, D.: Large eddy simulation of turbulent flow for wall mounted cantilever cylinders of aspect ratio 6 and 10. Int. J. Heat Fluid Flow 28(4), 561–574 (2007)

    Google Scholar 

  15. Sahin, B.; Ozturk, N.; Akilli, H.: Horseshoe vortex system in the vicinity of the vertical cylinder mounted on a flat plate. Flow Meas. Instrum. 18(2), 57–68 (2007)

    Google Scholar 

  16. Palau-Salvador, G.; Stoesser, T.; Fröhlich, J.; Kappler, M.; Rodi, W.: Large eddy simulations and xxperiments of flow around finite-height cylinders. Flow Turbul. Combust. 84(2), 239–275 (2009)

    MATH  Google Scholar 

  17. García-Villalba, M.; Palau-Salvador, G.; Rodi, W.: Forced convection heat transfer from a finite-height cylinder. Flow Turbul. Combust. 93, 171–187 (2014)

    Google Scholar 

  18. Rostamy, N.; Sumner, D.; Bergstrom, D.J.; Bugg, J.D.: Instantaneous flow field above the free end of finite-height cylinders and prisms. Int. J. Heat Fluid Flow 43, 120–128 (2013)

    Google Scholar 

  19. Zhang, D.; Cheng, L.; An, H.; Draper, S.: Flow around a surface-mounted finite circular cylinder completely submerged within the bottom boundary layer. Eur. J. Mech. B. Fluids 86, 169–197 (2021)

    MathSciNet  Google Scholar 

  20. Burlayenko, V.N.; Altenbach, H.; Sadowski, T.; Dimitrova, S.D.; Bhaskar, A.: Modelling functionally graded materials in heat transfer and thermal stress analysis by means of graded finite elements. Appl. Math. Model. 45, 422–438 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Eslami, M.R.; Babaei, M.H.; Poultangari, R.: Thermal and mechanical stresses in a functionally graded thick sphere. Int. J. Press. Vessels Pip. 82, 522–527 (2005)

    Google Scholar 

  22. Jabbari, M.; Sohrabpour, S.; Eslami, M.R.: Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int. J. Press. Vessels Pip. 79(7), 493–497 (2002)

    MATH  Google Scholar 

  23. Peng, X.L.; Li, X.F.: Transient response of temperature and thermal stresses in a functionally graded hollow cylinder. J. Therm. Stress. 33(5), 485–500 (2010)

    Google Scholar 

  24. Shao, Z.S.: Mechanical and thermal stresses of a functionally graded circular hollow cylinder with finite length. Int. J. Press. Vessels Pip. 82(3), 155–163 (2005)

    Google Scholar 

  25. Vel, S.S.; Batra, R.C.: Three-dimensional analysis of transient thermal stresses in functionally graded plates. Int. J. Solids Struct. 40(25), 7181–7196 (2003)

    MATH  Google Scholar 

  26. Hassanzadeh, R.; Pekel, H.: Heat transfer enhancement in annular fins using functionally graded material. Heat Transf. Asian Res. 42(7), 603–617 (2013)

    Google Scholar 

  27. Hassanzadeh, R.; Pekel, H.: Assessment of thermal performance of the functionally graded materials in annular fins. J. Eng. Thermophys. 25(3), 377–388 (2016)

    Google Scholar 

  28. Hassanzadeh, R.; Bilgili, M.: Assessment of thermal performance of functionally graded materials in longitudinal fins. J. Eng. Phys. Thermophys. 91(1), 79–88 (2018)

    Google Scholar 

  29. Hassanzadeh, R.; Bilgili, M.: Improvement of thermal efficiency in computer heat sink using functionally graded materials. Commun. Adv. Comput. Sci. Appl. 2014, 1–13 (2014)

    Google Scholar 

  30. Oguntala, G.; Danjuma, I.; Sobamowo, G.; Abd-Alhameed, R.; Noras, J.: Nonlinear thermal analysis of a convective-radiative longitudinal porous fin of functionally graded material for efficient cooling of consumer electronics. Int. J. Ambient Energy 43(1), 385–399 (2019)

    Google Scholar 

  31. Amiri Delouei, A.; Emamian, A.; Karimnejad, S.; Sajjadi, H.; Tarokh, A.: On 2D asymmetric heat conduction in functionally graded cylindrical segments: a general exact solution. Int. J. Heat Mass Transf. 143, 118515 (2019)

    Google Scholar 

  32. Aziz, A.; Rahman, M.M.: Thermal performance of a functionally graded radial fin. Int. J. Thermophys. 30(5), 1637–1648 (2009)

    Google Scholar 

  33. Gaba, V.K.; Tiwari, A.K.; Bhowmick, S.: Thermal performance of functionally graded parabolic annular fins having constant weight. J. Mech. Sci. Technol. 28(10), 4309–4318 (2014)

    Google Scholar 

  34. Khan, W.A.; Aziz, A.: Transient heat transfer in a functionally graded convecting longitudinal fin. Heat Mass Transf. 48(10), 1745–1753 (2012)

    Google Scholar 

  35. Haque, M.R.; Hridi, T.J.; Haque, M.M.: CFD studies on thermal performance augmentation of heat sink using perforated twisted, and grooved pin fins. Int. J. Therm. Sci. 182, 107832 (2022)

    Google Scholar 

  36. Wang, J.; Yu, K.; Ye, M.; Wang, E.; Wang, W.; Sundén, B.: Effects of pin fins and vortex generators on thermal performance in a microchannel with Al2O3 nanofluids. Energy 239, 122606 (2022)

    Google Scholar 

  37. Zhang, H.; Yang, J.M.; Xiao, L.F.; Lü, H.N.: Large-eddy simulation of the flow past both finite and infinite circular cylinders at Re = 3900. J. Hydrodyn. 27(2), 195–203 (2015)

    Google Scholar 

  38. Patankar, S.: Numerical Heat Transfer and Fluid Flow. Taylor & Francis (2018)

    MATH  Google Scholar 

  39. Gu, F.; Wang, J.S.; Qiao, X.Q.; Huang, Z.: Pressure distribution, fluctuating forces and vortex shedding behavior of circular cylinder with rotatable splitter plates. J. Fluids Struct. 28, 263–278 (2012)

    Google Scholar 

  40. Heseltine, J.L.: Flow around a circular cylinder with a free end. Master thesis, University of Saskatachewan, Canada (2003)

  41. Uematsu, Y.; Yamada, M.: Effects of aspect ratio and surface roughness on the time-averaged aerodynamic forces on cantilevered circular cylinders at high Reynolds numbers. J. Wind Eng. Ind. Aerodyn. 54–55, 301–312 (1995)

    Google Scholar 

  42. Wang, H.F.; Zhou, Y.; Mi, J.: Effects of aspect ratio on the drag of a wall-mounted finite-length cylinder in subcritical and critical regimes. Exp. Fluids. 53(2), 423–436 (2012)

    Google Scholar 

  43. Taniguchi, S.; Sakamoto, H.; Arie, M.: Flow around circular cylinders of finite height placed vertically in turbulent boundary layers. Bull. JSME 24(187), 37–44 (1981)

    Google Scholar 

  44. Rostamy, N.; Sumner, D.J.; Bergstrom, J.D.; Bugg, J.: Local flow field of a surface-mounted finite circular cylinder. J. Fluids Struct. 34, 105–122 (2012)

    Google Scholar 

  45. Sumner, D.; Heseltine, J.L.; Dansereau, O.J.P.: Wake structure of a finite circular cylinder of small aspect ratio. Exp. Fluids 37(5), 720–730 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahim Hassanzadeh.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafili Kurdkandi, M., Hassanzadeh, R. Transient Conjugate Heat Transfer Analysis of a Cylindrical Pin Fin Made by Functionally Graded Material Embedded in the Turbulent Flow. Arab J Sci Eng 48, 12625–12643 (2023). https://doi.org/10.1007/s13369-022-07374-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07374-4

Keywords

Navigation