Skip to main content
Log in

Fabrication and Microscale Characterization of Iron Matrix Composite Wires Reinforced by in situ Synthesized Iron Boride Phases

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

For decades, the demand for thermally stable wear and corrosion-resistant materials has been met by surface boriding of ferrous materials. Issues associated with the surface boriding, such as boride layer–host material interface instabilities, could be avoided by the in situ synthesis of iron borides. However, attempts to fabricate bulks of iron matrix reinforced with iron borides using casting have inherent drawbacks. The requirement of elevated temperatures and less control over the microstructure can be given as examples. This study uses an in situ approach to manufacture iron matrix microcomposite wires reinforced with controlled morphology and ratio of iron borides. Powder mixtures of 5, 10, and 15 vol. %~B4C in Fe are compacted in steel tubes which are cold rolled to turn the iron particles into extended fibers. Wires are later treated at 1100 °C for 2 h to assist the B diffusion into elongated Fe particles, consequently resulting in the synthesis of iron borides. The influence of the processing parameters on the microstructure is evaluated using microhardness, SEM, EDS, tensile testing, and fractographic analyses. Results showed that the iron borides’ morphology and relative ratio in the iron matrix can be controlled by employing an appropriate combination of plastic deformation and powder mixture ratios in the pre-sinter wires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Zafar, H.M.N.; Nair, F.: Deformation processed high strength high conductivity Cu and Al matrix composite wires: an introductory review. Proc. Inst. Mech. Eng. L. 236, 1927–1948 (2022). https://doi.org/10.1177/14644207221090534

    Article  Google Scholar 

  2. Sahin, S.; Meric, C.; Saritas, S.: Production of ferroboron powders by solid boronizing method. Adv. Powder Technol. 21, 483–487 (2010). https://doi.org/10.1016/j.apt.2010.01.011

    Article  Google Scholar 

  3. Montealegre-Melendez, I.; Arévalo, C.; Ariza, E.; Pérez-Soriano, E.M.; Rubio-Escudero, C.: Analysis of the microstructure and mechanical properties of titanium-based composites reinforced by secondary phases and B4C particles produced via direct hot pressing. Materials. 10, 1240 (2017). https://doi.org/10.3390/ma10111240

    Article  Google Scholar 

  4. Fattahi, M.; Pazhouhanfar, Y.; Delbari, S.A.; Shaddel, S.; Namini, S.: A Strengthening of novel TiC–AlN ceramic with in-situ synthesized Ti3Al intermetallic compound. Ceram. Int. 46, 14105–14113 (2020). https://doi.org/10.1016/j.ceramint.2020.02.213

    Article  Google Scholar 

  5. Balaji, V.S.; Kumaran, S.: Densification and microstructural studies of titanium–boron carbide (B4C) powder mixture during spark plasma sintering. Powder Technol. 264, 536–540 (2014). https://doi.org/10.1016/j.powtec.2014.05.050

    Article  Google Scholar 

  6. Zhang, J.; Liu, J.; Liao, H.; Zeng, M.; Ma, S.: A review on relationship between morphology of boride of Fe-B alloys and the wear/corrosion resistant properties and mechanisms. J. Mater. Res. Technol. 8, 6308–6320 (2019). https://doi.org/10.1016/j.jmrt.2019.09.004

    Article  Google Scholar 

  7. Allaoui, O.; Bouaouadja, N.; Saindernan, G.: Characterization of boronized layers on a XC38 steel. Surf. Coat. Technol. 201, 3475–3482 (2006). https://doi.org/10.1016/j.surfcoat.2006.07.238

    Article  Google Scholar 

  8. Kayali, Y.; Büyüksaǧiş, A.; Yalçin, Y.: Corrosion and wear behaviors of boronized AISI 316L stainless steel. Met. Mater. Int. 19, 1053–1061 (2013). https://doi.org/10.1007/s12540-013-5019-x

    Article  Google Scholar 

  9. Nair, F.; Zafar, H.M.N.; Cerit, A.A.; Karamış, M.B.: Analyzing the influence of simultaneously austenitization and multi-directional boriding on the surface and subsurface of H13 tool steel. J. Mater. Eng. Perform. (2022). https://doi.org/10.1007/s11665-022-07036-4

    Article  Google Scholar 

  10. Ohtani, H.; Hasebe, M.; Ishida, K.; Nishizawa, T.: Calculation of Fe-C-B Ternary phase diagram. Trans. Iron Steel Inst. Jpn. 28, 1043–1050 (1988). https://doi.org/10.2355/isijinternational1966.28.1043

    Article  Google Scholar 

  11. Aizenshtein, M.; Mizrahi, I.; Froumin, N.; Hayun, S.; Dariel, M.: Interface interaction in the B4C/(Fe–B–C) system. Mater. Sci. Eng. C. 495, 70–74 (2008). https://doi.org/10.1016/j.msea.2007.06.100

    Article  Google Scholar 

  12. Medvedovski, E., Chinski, FA & Stewart, J., Thermal diffusion coatings for wear-resistant components for oil and gas industry, In: P. C. Tatsuki Ohji, Makio Naito, Javier E. Garay, Hua-Tay Lin. pp. 13–29. Wiley, Coronado, California (2014)

  13. Lentz, J.; Röttger, A.; Theisen, W.: Hardness and modulus of Fe2B, Fe3 (C, B), and Fe23 (C, B) 6 borides and carboborides in the Fe-CB system. Mater. Charact. 135, 192–202 (2018). https://doi.org/10.1016/j.matchar.2017.11.012

    Article  Google Scholar 

  14. Delai, O.; Xia, C.; Shiqiang, L.: Growth kinetics of the FeB/Fe2B boride layer on the surface of 4Cr5MoSiV1 steel: experiments and modelling. J. Mater. Res. Technol. 11, 1272–1280 (2021). https://doi.org/10.1016/j.jmrt.2021.01.109

    Article  Google Scholar 

  15. García-León, R.A.; Martínez-Trinidad, J.; Campos-Silva, I.: Historical review on the boriding process using bibliometric analysis. Trans. Indian Inst. Met. 74, 541–557 (2021). https://doi.org/10.1007/s12666-020-02174-6

    Article  Google Scholar 

  16. Sireli, GK., Molten salt baths: electrochemical boriding, In: G. E. T. Rafael Colas. (1st), pp. 2284–2300. Taylor & Francis, Boca Raton, USA (2016)

  17. Martini, C.; Palombarini, G.; Poli, G.; Prandstraller, D.: Sliding and abrasive wear behaviour of boride coatings. Wear 256, 608–613 (2004). https://doi.org/10.1016/j.wear.2003.10.003

    Article  Google Scholar 

  18. Campos-Silva, I.; Martinez-Trinidad, J.; Doñu-Ruíz, M.; Rodríguez-Castro, G.; Hernandez-Sanchez, E.: Interfacial indentation test of FeB/Fe2B coatings. Surf. Coat. Technol. 206, 1809–1815 (2011). https://doi.org/10.1016/j.surfcoat.2011.08.017

    Article  Google Scholar 

  19. Bagliuk, G., Properties and structure of sintered boron containing carbon steels, In: V. Shatokha. pp. 249–266. InTechOpen, Rijeka, Croatia (2012)

  20. Bindal, C.; Ucisik, A.: Characterization of boriding of 0.3% C, 0.02% P plain carbon steel. Vacuum. 82, 90–94 (2007). https://doi.org/10.1016/j.vacuum.2007.04.039

    Article  Google Scholar 

  21. Sen, U.; Sen, S.; Yilmaz, F.: An evaluation of some properties of borides deposited on boronized ductile iron. J. Mater. Process. Technol. 148, 1–7 (2004). https://doi.org/10.1016/j.jmatprotec.2004.01.015

    Article  Google Scholar 

  22. Bindal, C.; Üçisik, A.H.: Characterization of borides formed on impurity-controlled chromium-based low alloy steels. Surf. Coat. Technol. 122, 208–213 (1999). https://doi.org/10.1016/S0257-8972(99)00294-7

    Article  Google Scholar 

  23. Simonenko, A.N.; Poroshin, V.V.; Antia, P.K.: Aging of salt baths with electrolysis-free liquid boriding. Met. Sci. Heat Treat. 27, 13–16 (1985). https://doi.org/10.1007/BF00741880

    Article  Google Scholar 

  24. Bartsch, K.; Leonhardt, A.: Formation of iron boride layers on steel by d.c.-plasma boriding and deposition processes. Surf. Coat. Technol. 116–119, 386–390 (1999). https://doi.org/10.1016/S0257-8972(99)00078-X

    Article  Google Scholar 

  25. Kulka, M.; Makuch, N.; Piasecki, A.: Nanomechanical characterization and fracture toughness of FeB and Fe2B iron borides produced by gas boriding of Armco iron. Surf. Coat. Technol. 325, 515–532 (2017). https://doi.org/10.1016/j.surfcoat.2017.07.020

    Article  Google Scholar 

  26. Matiašovský, K.; Chrenková-Paučírová, M.; Fellner, P.; Makyta, M.: Electrochemical and thermochemical boriding in molten salts. Surf. Coat. Technol. 35, 133–149 (1988). https://doi.org/10.1016/0257-8972(88)90064-3

    Article  Google Scholar 

  27. Lyakhovich, L.S.; Protasevich, G.F.; Voroshnin, L.G.; Suprunovich, A.S.; Shabashova, N.D.: Liquid boriding. Met. Sci. Heat Treat. 18, 647–648 (1976). https://doi.org/10.1007/BF00703830

    Article  Google Scholar 

  28. Jamali, G.; Nourouzi, S.; Jamaati, R.: Manufacturing of gradient Al/SiC composite wire by friction stir back extrusion. CIRP J. Manuf. Sci. Technol. 35, 735–743 (2021). https://doi.org/10.1016/j.cirpj.2021.09.004

    Article  Google Scholar 

  29. Mindivan, H.: A Study on the corrosion and Tribocorrosion behavior of Al-30 Vol.% B4C composite produced by mechanical milling and hot pressing. J. Mater. Eng. Perform. 30, 9140–9148 (2021). https://doi.org/10.1007/s11665-021-06127-y

    Article  Google Scholar 

  30. Hamamcı, M.; Cerit, A.A.; Nair, F.: Effect of sintering parameters on the microstructure and micromechanical properties of in-situ synthesized boride phases (Fe2B-FeB) in iron matrix composites reinforced with B4C particles. Mater. Charact. 191, 112075 (2022). https://doi.org/10.1016/j.matchar.2022.112075

    Article  Google Scholar 

  31. Fiedler, H.C.; Hayes, W.J.: The formation of a soft layer in borided hot work die steels. Metall. Trans. 1, 1071–1073 (1970). https://doi.org/10.1007/BF02811810

    Article  Google Scholar 

  32. Ma, Y.; Gao, Z.; Qi, Y.; Zhang, X.; Wang, L.: Fabrication and characterization of iron pnictide wires and bulk materials through the powder-in-tube method. Physica C: Supercond. 469, 651–656 (2009). https://doi.org/10.1016/j.physc.2009.03.024

    Article  Google Scholar 

  33. Huang, Z.; Ma, S.; Xing, J.; Wang, B.: Bulk Fe2B crystal fabricated by mechanical ball milling and plasma activated sintering. J. Alloys Compd. 582, 196–200 (2014). https://doi.org/10.1016/j.jallcom.2013.07.205

    Article  Google Scholar 

  34. Ma, S.; Xing, J.; Fu, H.; He, Y.; Bai, Y.: Interface characteristics and corrosion behaviour of oriented bulk Fe2B alloy in liquid zinc. Corros. Sci. 78, 71–80 (2014). https://doi.org/10.1016/j.corsci.2013.08.033

    Article  Google Scholar 

  35. Li, K.; Huang, Z.; Jian, Y.; Min, T.; Lou, X.: Friction and wear behavior of single-phase Fe2B Bulk under dry sliding condition. Tribol. Trans. 61, 513–521 (2018). https://doi.org/10.1080/10402004.2017.1363929

    Article  Google Scholar 

  36. Ma, S.; Xing, J.; He, Y.; Fu, H.; Li, Y.: Effect of orientation and lamellar spacing of Fe2B on interfaces and corrosion behavior of Fe-B alloy in hot-dip galvanization. Acta Mater. 115, 392–402 (2016). https://doi.org/10.1016/j.actamat.2016.06.016

    Article  Google Scholar 

  37. Zhang, J.; Gao, Y.; Xing, J.; Wei, X.; Ma, S.: Effect of hot forging on microstructure and abrasion resistance of Fe-B Alloy. Tribol. Trans. 56, 461–468 (2013). https://doi.org/10.1080/10402004.2012.759304

    Article  Google Scholar 

  38. Ma, S.; Zhang, J.; Ma, S.: Abrasion wear behavior of a forged and unforged Fe-B alloy. Mater. Test. 58, 127–132 (2016). https://doi.org/10.3139/120.110834

    Article  Google Scholar 

  39. Yi, D.; Xing, J.; Ma, S.; Fu, H.; Chen, W.: Three-body abrasive wear behavior of low carbon Fe–B cast alloy and its microstructures under different casting process. Tribol. Lett. 42, 67–77 (2011). https://doi.org/10.1007/s11249-011-9748-z

    Article  Google Scholar 

  40. Shi, X.L.; Jiang, Y.H.; Zhou, R.: Effects of rare earth, titanium, and magnesium additions on microstructures and properties of high-boron medium-carbon alloy. J. Iron Steel Res. Int. 23, 1226–1233 (2016). https://doi.org/10.1016/S1006-706X(16)30180-7

    Article  Google Scholar 

  41. Chen, X.; Li, Y.: Effect of heat treatment on microstructure and mechanical properties of high boron white cast iron. Mater. Sci. Eng. A. 528, 770–775 (2010). https://doi.org/10.1016/j.msea.2010.09.092

    Article  Google Scholar 

  42. Chang, K.-C.; Zhao, J.-R.; Hung, F.-Y.: Microstructure, mechanical properties, and fatigue fracture characteristics of high-fracture-resistance selective laser melting Al-Ni-Cu alloys. Metals. 11, 1–13 (2021). https://doi.org/10.3390/met11010087

    Article  Google Scholar 

  43. Yu, Z.; Xu, Z.; Guo, Y.; Xin, R.; Liu, R.: Study on properties of SLM-NiTi shape memory alloy under the same energy density. J. Mater. Res. Technol. 13, 241–250 (2021). https://doi.org/10.1016/j.jmrt.2021.04.058

    Article  Google Scholar 

  44. Konovalov, S.; Osintsev, K.; Golubeva, A.; Smelov, V.; Ivanov, Y.: Surface modification of Ti-based alloy by selective laser melting of Ni-based superalloy powder. J. Mater. Res. Technol. 9, 8796–8807 (2020). https://doi.org/10.1016/j.jmrt.2020.06.016

    Article  Google Scholar 

  45. Nair, F.; Hamamcı, M.: Effect of In-Situ synthesized boride phases on the impact behavior of iron-based composites reinforced by B4C particles. Metals. 10, 554 (2020). https://doi.org/10.3390/met10050554

    Article  Google Scholar 

  46. Pantsyrny, V.I.; Khlebova, N.E.; Sudyev, S.V.; Kukina, O.V.; Beliakov, N.A.: Thermal stability of the high strength high conductivity Cu–Nb, Cu–V, and Cu–Fe nanostructured microcomposite wires. IEEE Trans. Appl. Supercond. 24, 1–4 (2014). https://doi.org/10.1109/TASC.2013.2293655

    Article  Google Scholar 

  47. Manchili, S.K.; Wendel, J.; Zehri, A.; Liu, J.; Hryha, E.: Effect of nanopowder addition on the sintering of water-atomized iron powder. Metall. Mater. Trans. A. 51, 4890–4901 (2020). https://doi.org/10.1007/s11661-020-05891-1

    Article  Google Scholar 

  48. Turov, Y.V.; Khusid, B.; Voroshnin, L.; Khina, B.; Kozlovskii, I.: Structure formation in sintering iron-boron carbide powder composite. Powder Metall. Met. Ceram. 30, 465–470 (1991). https://doi.org/10.1007/BF00795069

    Article  Google Scholar 

  49. Turov, Y.V.; Khusid, B.; Voroshnin, L.; Khina, B.; Kozlovskii, I.: Gas transport processes in sintering of an iron-boron carbide powder composite. Sov. Powder Metall. Met. Ceram. 28, 618–622 (1989). https://doi.org/10.1007/BF00794577

    Article  Google Scholar 

  50. Sezgin, C.T.; Hayat, F.: The effects of boriding process on tribological properties and corrosive behavior of a novel high manganese steel. J. Mater. Process. Technol. 300, 117421 (2022). https://doi.org/10.1016/j.jmatprotec.2021.117421

    Article  Google Scholar 

  51. Ozdemir, O.; Usta, M.; Bindal, C.; Ucisik, A.H.: Hard iron boride (Fe2B) on 99.97wt% pure iron. Vacuum. 80, 1391–1395 (2006). https://doi.org/10.1016/j.vacuum.2006.01.022

    Article  Google Scholar 

  52. Ebrahimi, S.; Heydari, M.S.; Baharvandi, H.R.; Ehsani, N.: Effect of iron on the wetting, sintering ability, and the physical and mechanical properties of boron carbide composites: a review. Int. J. Refract. Hard Met. 57, 78–92 (2016). https://doi.org/10.1016/j.ijrmhm.2016.02.007

    Article  Google Scholar 

  53. Marr, T.; Freudenberger, J.; Kauffmann, A.; Romberg, J.; Okulov, I.: Processing of intermetallic Titanium aluminide wires. Metals. 3, 188–201 (2013). https://doi.org/10.3390/met3020188

    Article  Google Scholar 

  54. Zhao, Q.; Wu, Y.; He, J.; Yao, Y.; Sun, Z.: Effect of cold drawing on microstructure and properties of the invar alloy strengthened by carbide-forming elements. J. Mater. Res. Technol. 13, 1012–1019 (2021). https://doi.org/10.1016/j.jmrt.2021.05.026

    Article  Google Scholar 

  55. Hardwick, D.A.; Rhodes, C.G.; Fritzemeier, L.G.: The effect of annealing on the microstructure and mechanical properties of Cu-X microcomposites. Metall. Trans. A. 24, 27–34 (1993). https://doi.org/10.1007/bf02669599

    Article  Google Scholar 

  56. Dudrová, E.; Kabátová, M.: Fractography of sintered steels. Powder Metall. Prog. 8, 59–75 (2004)

    Google Scholar 

  57. Vidal, V.; Thilly, L.; Lecouturier, F.; Renault, P.O.: Effects of size and geometry on the plasticity of high-strength copper/tantalum nanofilamentary conductors obtained by severe plastic deformation. Acta Mater. 54, 1063–1075 (2006). https://doi.org/10.1016/j.actamat.2005.10.031

    Article  Google Scholar 

  58. Rodriguez, J.A.; Goodman, D.W.J.S.: The nature of the metal-metal bond in bimetallic surfaces. Science 257, 897–903 (1992)

    Article  Google Scholar 

  59. Özturk, T.; Poole, W.J.; Embury, J.D.: The deformation of Cu·W laminates. Mater. Sci. Eng. A. 148, 175–178 (1991). https://doi.org/10.1016/0921-5093(91)90819-9

    Article  Google Scholar 

  60. Vassileva, V.; Danninger, H.; Strobl, S.; Gierl-Mayer, C.; de Oro Calderon, R.: The role of the atmosphere on boron-activated sintering of ferrous powder compacts. Powder Metall. Prog. 18, 6–20 (2018). https://doi.org/10.1515/pmp-2018-0002

    Article  Google Scholar 

  61. Rokebrand, P.; Sigalas, I.: Fe–B–C composites produced using spark plasma sintering. Int. J. Refract. Hard Met. 49, 320–326 (2015). https://doi.org/10.1016/j.ijrmhm.2014.07.039

    Article  Google Scholar 

  62. Tkachenko, V.F.; Kogan, Y.I.: Structural characteristics and mechanical properties of sintered Fe-B4C materials. Sov. Powder Metall. Met. Ceram. 17, 384–388 (1978). https://doi.org/10.1007/BF00795022

    Article  Google Scholar 

Download references

Funding

This study did not receive any funding.

Author information

Authors and Affiliations

Authors

Contributions

Fehmi Nair was involved in conceptualization, materials and experimental setup preparation, resources, and supervision. Hafiz Muhammad Numan Zafar was involved in conceptualization, data curation, manuscript preparation, validation, and visualization.

Corresponding author

Correspondence to Hafız Muhammad Numan Zafar.

Ethics declarations

Conflict of interests

The authors confirm that they have no competing interests associated with the publication of this study.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zafar, H.M.N., Nair, F. Fabrication and Microscale Characterization of Iron Matrix Composite Wires Reinforced by in situ Synthesized Iron Boride Phases. Arab J Sci Eng 48, 3909–3930 (2023). https://doi.org/10.1007/s13369-022-07320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07320-4

Keywords

Navigation