Skip to main content
Log in

Electrocoagulated Batik Sludge Adsorbent for the Adsorption of Acid Red 18 Dye in an Aqueous Solution and its Regeneration Capability

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Electrocoagulation was demonstrated for the effective removal of organic dyes, waxes, and sodium silicate from batik wastewater. For the first time, the reuse of an electrocoagulated batik sludge (EBS) by converting it into an adsorbent for Acid Red 18 (AR18) dye removal is reported. The EBS sample was dried in an oven to produce the raw EBS (REBS) adsorbent, which was then calcined to remove its organic constituents to give calcined EBS (CEBS) adsorbent. Nitrogen adsorption–desorption isotherm, scanning electron microscope-energy-dispersive X-ray (SEM–EDX), and Fourier transformed infrared (FTIR) analyses were applicable to reveal the adsorbents’ physical and chemical characteristics. Effect of different preparation methods (REBS and CEBS), initial solution pH (3–9), adsorbent dosage (0.1–0.4 g/200 mL), initial concentrations (25–100 mg/L), and temperature (30–50 °C) on the adsorption of AR18 dye as well as regeneration and leaching study of the adsorbent were elucidated. The isotherm results indicated that the experimental data were best fitted to the Langmuir model with maximum adsorption capacity, qmax of 51.62 mg/g. Meanwhile, the adsorption of AR18 dye onto REBS mainly occurred through chemisorption as the kinetic data were best described by the pseudo-second-order model. REBS appeared to be a potential adsorbent for the removal of AR18 dye due to its simple preparation method, good adsorption capacity, and reusability performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Dawood, S.; Sen, T.K.: Review on dye removal from its aqueous solution into alternative cost effective and non-conventional adsorbents. J Chem. Proc. Eng. 1(104), 1–11 (2014). https://doi.org/10.17303/jce.2014.105

    Article  Google Scholar 

  2. Yaneva, Z.L.; Georgieva, N.V.: Insights into Congo red adsorption on agro-industrial materials: spectral, equilibrium, kinetic, thermodynamic, dynamic and desorption studies—a review. Int. Rev. Chem. Eng. 4, 127–146 (2012)

    Google Scholar 

  3. Iqbal, M.; Ahmad, M.Z.; Bhatti, I.A.; Qureshi, K.; Khan, A.: Cytotoxicity reduction of wastewater treated by advanced oxidation process. Chem. Int. 1(1), 53–59 (2015). https://doi.org/10.31221/osf.io/g6qw5

    Article  Google Scholar 

  4. Zhang, W.; Lai, L.; Mei, P.; Li, Y.; Liu, Y.: Enhanced removal efficiency of acid red 18 from aqueous solution using wheat bran modified by multiple quaternary ammonium salts. Chem. Phy. Lett. 710, 193–201 (2018). https://doi.org/10.1016/j.cplett.2018.09.009

    Article  Google Scholar 

  5. Zhang, C.; Yu, Y.; Wei, H.; Li, K.: In situ growth of cube-like AgCl on montmorillonite as an efficient photocatalyst for dye (Acid Red 18) degradation. Appl. Surf. Sci. 456, 577–585 (2018). https://doi.org/10.1016/j.apsusc.2018.06.009

    Article  Google Scholar 

  6. Dias, N.C.; Bassin, J.P.; Sant, G.L.; Dezotti, M.: Ozonation of the dye Reactive Red 239 and biodegradation of ozonation products in a moving-bed biofilm reactor: revealing reaction products and degradation pathways. Int. Biodeter. Biodegr. 144, 104742 (2019). https://doi.org/10.1016/j.ibiod.2019.104742

    Article  Google Scholar 

  7. Malakootian, M.; Moridi, A.: Efficiency of electro-Fenton process in removing Acid Red 18 dye from aqueous solutions. Proc. Saf. Environ. Prot. 1, 138–147 (2017). https://doi.org/10.1016/j.psep.2017.06.008

    Article  Google Scholar 

  8. Bulgariu, L.; Escudero, L.B.; Bello, O.S.; Iqbal, M.; Nisar, J.; Adegoke, K.A.; Alakhras, F.; Kornaros, M.; Anastopoulos, I.: The utilization of leaf-based adsorbents for dyes removal: a review. J. Molec. Liq. 276, 728–747 (2019). https://doi.org/10.1016/j.molliq.2018.12.001

    Article  Google Scholar 

  9. Sonai, G.G.; de Souza, S.M.G.U.; de Oliveira, D.; de Souza, A.A.U.: The application of textile sludge adsorbents for the removal of Reactive Red 2 dye. J. Environ. Manag. 168, 149–156 (2016). https://doi.org/10.1016/j.jenvman.2015.12.003

    Article  Google Scholar 

  10. Kausar, A.; Iqbal, M.; Javed, A.; Aftab, K.; Nazli, Z.; Bhatti, H.N.; Nouren, S.: Dyes adsorption using clay and modified clay: a review. J. Molec. Liq. 256, 395–407 (2018). https://doi.org/10.1016/j.molliq.2018.02.034

    Article  Google Scholar 

  11. Choong, C.E.; Ibrahim, S.; Basirun, W.J.: Mesoporous silica from batik sludge impregnated with aluminum hydroxide for the removal of bisphenol A and ibuprofen. J. Colloid Interf. Sci. 541, 12–17 (2019). https://doi.org/10.1016/j.jcis.2019.01.071

    Article  Google Scholar 

  12. Attallah, M.F.; Ahmed, I.M.; Hamed, M.M.: Treatment of industrial wastewater containing Congo Red and Naphthol Green B using low-cost adsorbent. Environ. Sci. Pollut. Res. 20, 1106–1116 (2013). https://doi.org/10.1007/s11356-012-0947-4

    Article  Google Scholar 

  13. Santos, S.C.R.; Vilar, V.J.P.; Boaventura, R.A.R.: Waste metal hydroxide sludge as adsorbent for a reactive dye. J. Hazard. Mater. 153, 999–1008 (2008). https://doi.org/10.1016/j.jhazmat.2007.09.050

    Article  Google Scholar 

  14. Golder, A.K.; Samanta, A.N.; Ray, S.: Anionic reactive dye removal from aqueous solution using a new adsorbent—sludge generated in removal of heavy metal by electrocoagulation. Chem. Eng. J. 122, 107–115 (2006). https://doi.org/10.1016/j.cej.2006.06.003

    Article  Google Scholar 

  15. Yilmaz, A.E.; Boncukcuoglu, R.; Kocakerim, M.; Karakas, İH.: Waste utilization: The removal of textile dye (Bomaplex Red CR-L) from aqueous solution on sludge waste from electrocoagulation as adsorbent. Desalination 277, 156–163 (2011). https://doi.org/10.1016/j.desal.2011.04.018

    Article  Google Scholar 

  16. García-Gómez, C.; Rivera-Huerta, M.L.; Almazán-García, F.; Martin, A.: Electrocoagulated metal hydroxide sludge for fluoride and arsenic removal in aqueous solution: characterization, kinetic, and equilibrium studies. Water Air Soil Poll. 227(96), 1–16 (2016). https://doi.org/10.1007/s11270-016-2783-5

    Article  Google Scholar 

  17. Golder, A.K.; Samanta, A.N.; Ray, S.: Removal of phosphate from aqueous solutions using calcined metal hydroxides sludge waste generated from electrocoagulation. Separ. Purif. Technol. 52, 102–109 (2006). https://doi.org/10.1016/j.seppur.2006.03.027

    Article  Google Scholar 

  18. Gibson, L.T.: Mesosilica materials and organic pollutant adsorption: Part B removal from aqueous solution. Chem. Soc. Rev. 43(15), 5163–5172 (2014). https://doi.org/10.1039/c3cs60095e

    Article  Google Scholar 

  19. Castañeda, L.F.; Coreño, O.; Nava, J.L.: Arsenic and hydrated silica removal from groundwater by electrocoagulation using an up-flow reactor in a serpentine array. J. Environ. Chem. Eng. 7(5), 103353 (2019). https://doi.org/10.1016/j.jece.2019.103353

    Article  Google Scholar 

  20. Amri, N.; Ismail, S.; Azha, S.F.; Abdullah, A.Z.: Behaviors and mechanism of color, COD, and silica removals in the electrocoagulation of batik wastewater using waste aluminum electrodes. Int. J. Environ. Res. 15, 509–525 (2021). https://doi.org/10.1007/s41742-021-00329-x

    Article  Google Scholar 

  21. Azha, S.F.; Shamsudin, M.S.; Shahadat, M.; Ismail, S.: Low cost zwitterionic adsorbent coating for treatment of anionic and cationic dyes. J. Ind. Eng. Chem. 67, 187–198 (2018). https://doi.org/10.1016/j.jiec.2018.06.029

    Article  Google Scholar 

  22. Hach: Method 8185 Powder Pillows - Silicomolybdate Method. 1, 1–6, DOC316.53.01133 (2014). https://www.hach.com/silica-reagent-set-high-range-10-ml/product?id=7640191740. Accessed 12 Jan 2021

  23. Devi, P.; Saroha, A.K.: Utilization of sludge based adsorbents for the removal of various pollutants: a review. Sci. Total Environ. 578, 16–33 (2017). https://doi.org/10.1016/j.scitotenv.2016.10.220

    Article  Google Scholar 

  24. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918). https://doi.org/10.1021/ja02242a004

    Article  Google Scholar 

  25. Yusoff, M.M.; Yahaya, N.; Saleh, N.M.; Raoov, M.: A study on the removal of propyl, butyl, and benzyl parabens via newly synthesised ionic liquid loaded magnetically confined polymeric mesoporous adsorbent. RSC Adv. 8, 25617–25635 (2018). https://doi.org/10.1039/C8RA03408G

    Article  Google Scholar 

  26. Freundlich, H.M.F.: Over the adsorption in solution. J. Phys. Chem. 57, 385–471 (1906)

    Google Scholar 

  27. Ayawei, N.; Ebelegi, A.N.; Wankasi, D.: Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 3039817 (2017). https://doi.org/10.1155/2017/3039817

    Article  Google Scholar 

  28. Temkin, M.J.; Pyzhev, V.: Recent modifications to Langmuir isotherms. Acta Physiochim. 12, 217–225 (1940)

    Google Scholar 

  29. Ho, Y.S.; McKay, G.: Pseudo-second order model for sorption processes. Proc. Biochem. 34, 451–465 (1999). https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  Google Scholar 

  30. Murthy, T.P.K.; Gowrishankar, B.S.; Prabha, M.N.C.; Kruthi, M.; Krishna, R.H.: Studies on batch adsorptive removal of malachite green from synthetic wastewater using acid treated coffee husk: equilibrium, kinetics and thermodynamic studies. Microchem. J. 146, 192–201 (2019). https://doi.org/10.1016/j.microc.2018.12.067

    Article  Google Scholar 

  31. Sing, K.S.W.; Everett, D.H.: Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57(4), 603–619 (1985). https://doi.org/10.1351/pac198254112201

    Article  Google Scholar 

  32. Souza, A.D.V.; Arruda, C.C.; Fernandes, L.: Characterization of aluminum hydroxide (Al(OH)3) for use as a porogenic agent in castable ceramics. J. Eur. Ceram. Soc. 35(2), 803–812 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.09.010

    Article  Google Scholar 

  33. Sakthisharmila, P.; Palanisamy, P.N.; Manikandan, P.: Removal of benzidine based textile dye using different metal hydroxides generated in situ electrochemical treatment—a comparative study. J. Cleaner Prod. 172, 2206–2215 (2018). https://doi.org/10.1016/j.jclepro.2017.11.192

    Article  Google Scholar 

  34. Darmawan, A.; Smart, S.; Julbe, A.; da Costa, J.C.D.: Iron oxide silica derived from sol-gel synthesis. Materials 4(2), 448–456 (2011). https://doi.org/10.3390/ma4020448

    Article  Google Scholar 

  35. Takahashi, R.; Sato, S.; Sodesawa, T.; Kawakita, M.; Ogura, K.: High surface-area silica with controlled pore size prepared from nanocomposite of silica and citric acid. J. Phys. Chem. B 104(51), 12184–12191 (2000). https://doi.org/10.1021/jp002662g

    Article  Google Scholar 

  36. Wang, L.; Yan, W.; He, C.; Wen, H.; Cai, Z.; Wang, Z.; Chen, Z.; Lui, W.: Microwave-assisted preparation of nitrogen-doped biochars by ammonium acetate activation for adsorption of acid red 18. Appl. Surf. Sci. 433, 222–231 (2018). https://doi.org/10.1016/j.apsusc.2017.10.031

    Article  Google Scholar 

  37. Oulebsir, A.; Chaabane, T.; Zaidi, S.; Omine, K.; Alonzo, V.; Darchen, A.; Msagati, T.A.M.; Sivasankar, V.: Preparation of mesoporous alumina electro-generated by electrocoagulation in NaCl electrolyte and application in fluoride removal with consistent regenerations. Arab. J. Chem. 13(1), 271–289 (2020). https://doi.org/10.1016/j.arabjc.2017.04.007

    Article  Google Scholar 

  38. Hashim, K.S.; Hussein, A.H.; Zubaidi, S.L.; Kot, P.; Kraidi, L.; Alkhaddar, R.; Shaw, A.; Alwash, R.: Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method. J. Phys. Conf. Series 1294, 072017 (2019). https://doi.org/10.1088/1742-6596/1294/7/072017

    Article  Google Scholar 

  39. Mirzaei, N.; Reza, H.; Shara, K.; Velayati, A.: Modified natural zeolite using ammonium quaternary based material for Acid red 18 removal from aqueous solution. J. Environ. Chem. Eng. 5, 3151–3160 (2017). https://doi.org/10.1016/j.jece.2017.06.008

    Article  Google Scholar 

  40. Shirmardi, M.; Mesdaghinia, A.; Mahvi, A.H.; Nasseri, S.; Nabizadeh, R.: Kinetics and equilibrium studies on adsorption of Acid Red 18 (Azo-dye) using multiwall carbon nanotubes (MWCNTs) from aqueous solution. E-J. Chem. 9(4), 2371–2383 (2012). https://doi.org/10.1155/2012/541909

    Article  Google Scholar 

  41. Shokoohi, R.; Vatanpoor, V.; Zarrabi, M.; Vatani, A.: Adsorption of Acid Red 18 (AR18) by activated carbon from poplar wood—a kinetic and equilibrium study. E-J. Chem. 7(1), 65–72 (2010). https://doi.org/10.1155/2010/958073

    Article  Google Scholar 

  42. Zhou, Y.; Ge, L.; Fan, N.; Xia, M.: Adsorption of Congo red from aqueous solution onto shrimp shell powder. Adsorp. Sci. Technol. 36(5–6), 1310–1330 (2018). https://doi.org/10.1177/0263617418768945

    Article  Google Scholar 

  43. Lafi, R.; Montasser, I.; Hafiane, A.: Adsorption of congo red dye from aqueous solutions by prepared activated carbon with oxygen-containing functional groups and its regeneration. Adsorp. Sci. Technol. 37(1–2), 160–181 (2019). https://doi.org/10.1177/0263617418819227

    Article  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support from the Ministry of Higher Education of Malaysia for the LRGS Grant (LRGS/1/2018/USM/01/1/3) as well as Universiti Teknologi MARA (UiTM) for the postgraduate scholarship and study leave of the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Zuhairi Abdullah.

Ethics declarations

Conflict of interest

Not applicable.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amri, N., Ismail, S. & Abdullah, A.Z. Electrocoagulated Batik Sludge Adsorbent for the Adsorption of Acid Red 18 Dye in an Aqueous Solution and its Regeneration Capability. Arab J Sci Eng 48, 8705–8721 (2023). https://doi.org/10.1007/s13369-022-07316-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07316-0

Keywords

Navigation