Skip to main content
Log in

Friction Coefficients Calculation via Surface Roughness Characterization for Tight Sedimentary Rocks

  • Research Article-Petroleum Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In the drilling and stimulation operations of deep/ultra-deep oil and gas wells, high in situ stress conditions may increase the occurrence probability of rock shear failures. According to Mole-Coulomb laws, the friction coefficient becomes more significant in evaluating borehole instability, faults/natural fractures activation and hydraulic-natural fractures intersection scenarios. This paper proposes a multiscale model to calculate the rock friction coefficients based on the surface properties at different scales. The key parameters of surface properties are obtained from three-dimensional laser scan of friction planes, and the results are verified by the direct shearing and triaxial compression strength tests. For the flat or new-cutting surfaces, the computed basic friction coefficients range of 0.231–0.509, fitting well with the tested values of 0.303–0.437. It also shows that the basic friction coefficients grow in the order of shale, carbonate and tight sandstone, positively associated with the size of the rock sedimentary particles. For the roughness surfaces, the coefficients are computed based on the former basic friction values and the surface asperity dip angles distribution, and the values located in a wide range of 0.541–1.113, also matched well with the measured friction coefficients via direct shearing tests. When the normal stress increase, the rock friction coefficients generally decline, and the values of some shale and dolomite samples can decrease to 0.2, due to the existence of beddings or fracture fillings. The above outcomes may provide useful insights for wellbore instability assessment and hydraulic fracturing optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wang, W.; Pang, X.; Chen, Z.; Chen, D.; Zheng, T.; Luo, B.; Yu, R.: Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China. Energy 174, 861–872 (2019). https://doi.org/10.1016/j.energy.2019.03.018

    Article  Google Scholar 

  2. Gentzis, T.: Review of the hydrocarbon potential of the Steele Shale and Niobrara Formation in Wyoming, USA: A major unconventional resource play? Int. J. Coal Geol. 166, 118–127 (2016). https://doi.org/10.1016/j.coa12016.07.002

    Article  Google Scholar 

  3. Guo, J.; Gou, B.; Qin, N.: An innovative concept on deep carbonate reservoir stimulation: Three-dimensional acid fracturing technology. Nat. Gas. Ind. 40(2), 61–74 (2020). https://doi.org/10.3787/j.issn.1000-0976.2020.02.007

    Article  Google Scholar 

  4. Wen, H.; Chen, M.; Jin, Y.: A chemo-mechanical coupling model of deviated borehole stability in hard brittle shale. Pet. Explor. Dev. 41(6), 748–754 (2014). https://doi.org/10.1016/S1876-3804(14)60099-9

    Article  Google Scholar 

  5. Yan, W.; Ge, H.; Wang, J.: Experimental study of the friction properties and compressive shear failure behaviors of gas shale under the influence of fluids. J. Natural Gas Sci. Eng. 33, 153–161 (2016). https://doi.org/10.1016/j.jngse.2016.04.019

    Article  Google Scholar 

  6. Yu, H.; Taleghani, A.D.; Lian, Z.; Lin, T.: On how asymmetric stimulated rock volume in shales may impact casing integrity. Energy Sci. Eng. 8, 1524–1540 (2020). https://doi.org/10.1002/ese3.610

    Article  Google Scholar 

  7. Chuprakov, D.A.; Zhubayev, A.S.: A variational approach to analyze a natural fault with hydraulic fracture based on the strain energy density criterion. Theoret. Appl. Fract. Mech. 53(3), 221–232 (2010). https://doi.org/10.1016/j.tafmec.2010.06.007

    Article  Google Scholar 

  8. Dahi-Taleghani, A.; Olson, J.E.: Numerical modeling of multistranded-hydraulic-fracture propagation: accounting for the interaction between induced and natural fractures. SPE J. 16(3), 575–581 (2011). https://doi.org/10.2118/124884-PA

    Article  Google Scholar 

  9. Yi, W.; Rao, Q.H.; Luo, S.; Shen, Q.Q.; Li, Z.: A new integral equation method for calculating interacting stress intensity factor of multiple crack-hole problem. Theor. Appl. Fracture Mech. (2020). https://doi.org/10.1016/j.tafmec.2020.102535

    Article  Google Scholar 

  10. Yang, J.; Rong, G.; Hou, D.; Peng, J.; Zhou, C.: Experimental study on peak shear strength criterion for rock joints. Rock Mech. Rock Eng. 49(3), 821–835 (2016). https://doi.org/10.1007/s00603-015-0791-1

    Article  Google Scholar 

  11. Mehrishal, S.; Sharifzadeh, M.; Shahriar, K.: Shear model development of limestone joints with incorporating variations of basic friction coefficient and roughness components during shearing. Rock Mech. Rock Eng. 50(4), 825–855 (2017). https://doi.org/10.1007/s00603-016-1128-4

    Article  Google Scholar 

  12. Yan, X.; You, L.; Kang, Y.: Impact of drilling fluids on friction coefficient of brittle gas shale. Int. J. Rock. Mech. Min. Sci. 106, 144–152 (2018). https://doi.org/10.1016/j.ijrmms.2018.04.026

    Article  Google Scholar 

  13. Scholz, C.H.; Molnar, P.; Johnson, T.: Detailed studies of Jrictional sliding in granite and implications for earthquake mechanism. J Geophys Res 77, 6392–6406 (1972). https://doi.org/10.1029/JB077i032p06392

    Article  Google Scholar 

  14. Barton, N.: The shear strength of rock and rock joints. Int. J. Rock. Mech. Min. 13(9), 255–279 (1976). https://doi.org/10.1016/0148-9062(76)90003-6

    Article  Google Scholar 

  15. Yao, L.; Ma, S.L.: Experimental simulation of coseismic fault sliding-significance, technological methods and research progress of high-velocity frictional experiments. Prog. Geophys. (In Chinese) 28(2), 607–623 (2013). https://doi.org/10.6038/pg20130210

    Article  Google Scholar 

  16. Byerlee, J.D.; Summers, R.: Stable sliding preceding stick-slip on fault surfaces in granite at high pressure. Pure Appl Geophys 113, 63–68 (1975). https://doi.org/10.1007/978-3-0348-5534-1_6

    Article  Google Scholar 

  17. Kulatilake, P.; Shou, G.; Huang, T., et al.: New peak shear strength criteria for anisotropic rock joints. Int J Rock Mech Min Sci Geomech Abs 32(7), 673–697 (1995). https://doi.org/10.1016/0148-9062(95)00022-9

    Article  Google Scholar 

  18. Mehrishal, S.; Sharifzadeh, M.; Shahriar, K.: An experimental study on normal stress and shear rate dependency of basic friction coefficient in dry and wet limestone joints. Rock Mech. Rock Eng. 49(12), 4607–4629 (2016). https://doi.org/10.1007/s00603-016-1073-2

    Article  Google Scholar 

  19. Dieterich, J.H.: Modeling of rock friction 1. Experimental results and constitutive equations. J. Geophys. Res. 84(B5), 2161–2168 (1979). https://doi.org/10.1029/JB084iB05p02161

    Article  Google Scholar 

  20. Marone, C.; Hobbs, B.E.; Ord, A.: Coulomb constitutive laws for friction: Contrasts in frictional behavior for distributed and localized shear. Pure Appl. Geophys. 139(2), 195–214 (1992). https://doi.org/10.1007/BF00876327

    Article  Google Scholar 

  21. Wang, G.; Zhang, X.; Jiang, Y.: Rate-dependent mechanical behavior of rough rock joints. Int. J. Rock Mech. Min. Sci. 83, 231–240 (2016). https://doi.org/10.1016/j.ijrmms.2015.10.013

    Article  Google Scholar 

  22. Jang, H.; Zhang, Q.; Kang, S.: Determination of the basic friction angle of rock surfaces by tilt tests. Rock Mech. Rock Eng. 51(4), 989–1004 (2018). https://doi.org/10.1007/s00603-017-1388-7

    Article  Google Scholar 

  23. Barton, N.: Review of a new sheer strength criterion for rock joints. Eogno. Geol. 7, 287–332 (1973). https://doi.org/10.1016/0013-7952(73)90013-6

    Article  Google Scholar 

  24. Barton, N.; Choubey, V.: The shear strength of rock joints in theory and practice. Rock Mech. 10(1–2), 1–54 (1977). https://doi.org/10.1007/BF01261801

    Article  Google Scholar 

  25. Reeves, M.J.: Rock surface roughness and frictional strength. Int J Rock Mech Min Sci 22(6), 429–442 (1985). https://doi.org/10.1016/0148-9062(85)90007-5

    Article  Google Scholar 

  26. Tate, N.J.: Estimating the fractal dimension of synthetic topographic surfaces. Comput. Geosci. 24, 325–334 (1998). https://doi.org/10.1016/S0098-3004(97)00119-2

    Article  Google Scholar 

  27. Rasouli, V.; Harrison, J.P.: Assessment of rock fracture surface roughness using Riemannian statistics of linear profiles. Int J Rock Mech Min Sci 47, 940–948 (2010). https://doi.org/10.1016/j.ijrmms.2010.05.013

    Article  Google Scholar 

  28. Park, J.W.; Song, J.J.: Numerical method for the determination of contact areas of a rock joint under normal and shear loads. Int J Rock Mech Min Sci 58, 8–22 (2013). https://doi.org/10.1016/j.ijrmms.2012.10.001

    Article  Google Scholar 

  29. Grasselli, G.; Egger, P.: Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. Int. J. Rock Mech. Min. Sci. 40, 25–40 (2003). https://doi.org/10.1016/S1365-1609(02)00101-6

    Article  Google Scholar 

  30. Li, Y.; Wu, W.; Li, B.: An analytical model for two-order asperity degradation of rock joints under constant normal stiffness conditions. Rock Mech. Rock Eng. 51, 1431–1445 (2018). https://doi.org/10.1007/s00603-018-1405-5

    Article  Google Scholar 

  31. Guan, C.; Qi, J.; Qiu, N.: Three levels friction coefficients of cracks and their influencing factors—taking the sandstone (particle packing layers) as an example. Appl. Math. Mech. 34(2), 209–216 (2013). https://doi.org/10.3879/j.issn.1000-0887.2013.02.011

    Article  MathSciNet  Google Scholar 

  32. Park, J.W.; Lee, Y.K.; Song, J.J.; Choi, B.H.: A constitutive model for shear behavior of rock joints based on three-dimensional quantification of joint roughness. Rock Mech Rock Eng 46, 1513–1537 (2013). https://doi.org/10.1007/s00603-012-0365-4

    Article  Google Scholar 

  33. Horn, H.M.; Deere, D.U.: Frictional characteristics of minerals. Geotechnique 12(4), 319–335 (1962). https://doi.org/10.1680/geot.1962.12.4.319

    Article  Google Scholar 

  34. Bobko, C.P.; Gathier, B.; Ortega, J.A.: The nanogranular origin of friction and cohesion in shale—A strength homogenization approach to interpretation of nanoindentation results. Int. J. Numer. Anal. Meth. Geomech. 35(17), 1854–1876 (2011). https://doi.org/10.1002/nag.984

    Article  Google Scholar 

  35. Popov, V.L.: Contact Mechanics and Friction: Physical Principles and Applications (2nd edition). Springer, Berlin Heidelberg, Berlin (2010) https://doi.org/10.1007/978-3-642-10803-7

    Book  Google Scholar 

  36. Bowden, F.P.; Tabor, D.: The Friction and Lubrication of Solids, Vol. 1. Oxford University Press, Oxford (2001) https://doi.org/10.1119/1.1933017

    Book  MATH  Google Scholar 

  37. Guan, C.Y.; Qi, J.F.; Qiu, N.S.; Zhao, G.C.; Yang, Q.; Bai, X.D.: Macroscopic young’s elastic modulus model of particle packing rock layers. Open J. Geol. 2(3), 198–202 (2012). https://doi.org/10.4236/ojg.2012.23020

    Article  Google Scholar 

  38. Tatone, B.S.; Grasselli, G.: A method to evaluate the three dimensional roughness of fracture surfaces in brittle geomaterials. Rev. Sci. Instrum. 80(12), 181–196 (2009). https://doi.org/10.1063/1.3266964

    Article  Google Scholar 

  39. Tian, Y.; Liu, Q.; Liu, D.: Updates to Grasselli’s peak shear strength model. Rock Mech. Rock Eng. 51(7), 2115–2133 (2018). https://doi.org/10.1007/s00603-018-1469-2

    Article  Google Scholar 

  40. Chen, X.; Zeng, Y.; Sun, H.: A new model of the initial dilatancy angle of rock joints based on Grasselli’s morphological parameters. Chin. J. Rock Mech. Eng. 38(1), 132–152 (2019). https://doi.org/10.13722/j.cnki.jrme.2018.0603

    Article  Google Scholar 

  41. Tang, Z.C.; Xia, C.; Song, Y.L.: Discussion about grasselli’s peak shear strength criterion for rock joints. Chin. J. Rock Mech. Eng. 31(2), 356–364 (2012)

    Google Scholar 

  42. Xia, C.C.; Tang, Z.C.; Xiao, W.M.: New peak shear strength criterion of rock joints based on quantified surface description. Rock Mech. Rock Eng. 47(2), 387–400 (2014). https://doi.org/10.1007/s00603-013-0395-6

    Article  Google Scholar 

  43. Han, R.; Hirose, T.; Shimamoto, T.: Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. J. Geophys. Res. 115(B03412), 1–23 (2010). https://doi.org/10.1029/2008JB006136

    Article  Google Scholar 

  44. Han, W.; Kang, T.; Wang, D.: Experimental studies on influence of mineral composition on frictional characteristics of polished rocks. Chinese J. Geotech. Eng. 33(8), 1211–1214 (2011). https://doi.org/10.1631/jzus.B1000185

    Article  Google Scholar 

  45. Grasselli, G.: Manuel rocha medal recipient shear strength of rock joints based on quantified surface description. Rock Mech. Rock Eng. 39(4), 295–314 (2006). https://doi.org/10.1007/s00603-006-0100-0

    Article  Google Scholar 

  46. Ban, L.; Qi, C.; Li, X.: A 3D quantified surface description for rock joint based on the real contact asperities. J. China Coal Soc. 45(12), 4052–4061 (2020). https://doi.org/10.13225/j.cnki.jccs.2019.1549

    Article  Google Scholar 

  47. Shi, X.; Cheng, Y.; Jiang, S.; Cai, D.; Zhang, T.: Experimental study of microstructure and rock properties of shale samples. Chin. J. Rock Mech. Eng. 33(2), 3439–3446 (2014). https://doi.org/10.13722/j.cnki.jrme.2014.s2.007

    Article  Google Scholar 

  48. An, M.; Zhang, F.; Elsworth, D.; Xu, Z.; Chen, Z.; Zhang, L.: Friction of Longmaxi shale gouges and implications for seismicity during hydraulic fracturing. J. Geophys. Res. Solid Earth 125, e2020JB019885 (2020). https://doi.org/10.1029/2020JB019885

    Article  Google Scholar 

  49. Guo, J.; Guo, B.; Chen, Y.; Luo, T.: An unloading strength criterion of rock considering end-friction effect. Chin. J. Rock Mech. Eng. 38(7), 1307–1318 (2019). https://doi.org/10.13722/j.cnki.jrme.2018.1433

    Article  Google Scholar 

  50. Jiang, W.: Formation Collapse Pressure Calculation Method Based on Mohr Circular Envelope. Southwest Petroleum University, Chengdu (2019) https://doi.org/10.27420/d.cnki.gxsyc.2019.000556

    Book  Google Scholar 

  51. Gao, Y.: The Rock Mechanical Characters and Fractures Stress Sensitivity Research of Dense Reservoir in West Sichuan Basin. Chengdu University of Technology, Chengdu (2008)

    Google Scholar 

  52. Niemeijer, A.; Di Toro, G.; Nielsen, S.; Di Felice, F.: Frictional melting of gabbro under extreme experimental conditions of normal stress, acceleration, and sliding velocity. J. Geophys. Res. 116, B07404 (2011). https://doi.org/10.1029/2010JB008181

    Article  Google Scholar 

  53. Hu, W.; Huang, R.; McSaveney, M.; Zhang, X.; Yao, L.; Shimamoto, T.: Mineral changes quantify frictional heating during a large low-friction landslide. Geology 46(3), 223–226 (2018). https://doi.org/10.1130/G39662.1

    Article  Google Scholar 

  54. Yang, B.; Kang, Y.; You, L.; Li, X.; Chen, Q.: Measurement of the surface diffusion coefficient for adsorbed gas in the fine mesopores and micropores of shale organic matter. Fuel 181, 793–804 (2016). https://doi.org/10.1016/j.fuel.2016.05.069

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Open Fund of the State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development (No. 3580000-22-ZC0607-0030), the National Natural Science Youth Foundation of China (No. 52104003), the Joint Fund of the National Natural Science Foundation of China (Nos. U19A2097 and U19B6003), the Natural Science Foundation of Guangdong Province (No. 2019A1515012235) and the Science and Technology Planning Project of Sichuan Province (Nos. 2021YJ0359 and 2020JDTD0017) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Yang.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Yang, B., Jin, J. et al. Friction Coefficients Calculation via Surface Roughness Characterization for Tight Sedimentary Rocks. Arab J Sci Eng 48, 9287–9298 (2023). https://doi.org/10.1007/s13369-022-07314-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07314-2

Keywords

Navigation