Skip to main content
Log in

Electrosorption of Cu(II) and Zn(II) in Capacitive Deionization by KOH Activation Coconut-Shell Activated Carbon

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Capacitive deionization (CDI) is a simple, cost-efficient, and environmentally friendly method for brackish water desalination, and CDI technology also refers to heavy metal removal through the non-Faraday-process. In order to develop the highly electro-adsorptive electrode for heavy metal electrosorption via CDI process, a combination of biomass-derived activated carbon (AC) and nano-carbonaceous materials have been considered as a sustainable approach. In this study, the composite coconut-shell-derived AC@CNTs electrode with low CNTs content (1 wt%) was utilized for Cu(II) and Zn(II) removal. The surface properties of pristine AC and KOH-activated AC with nitrogen adsorption technique (BET) and scanning electron microscopy (SEM) are characterized. As calculated from BET measurements, surface area are 581 m2/g, 560 m2/g, and 552 m2/g, corresponding to AC-KOH-2@CNTs, AC-KOH-4@CNTs, and AC-KOH-6@CNTs. After KOH activation, a specific capacitance of AC-KOH-2@CNTs is significantly increased up to 133.7 F/g in comparison with 78.0 F/g of pristine AC. Furthermore, in the Cu(II) and Zn(II) removal performance, AC-KOH-2@CNTs achieved a significant average salt adsorption rate of 29.87 mg/g min and 25.27 mg/g min with a high salt adsorption (SAC) of 7.31 mg/g and 12.55 mg/g at the operation voltage of 1.2 V in 200 ppm CuSO4 solution and 200 ppm ZnSO4 solution, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Porada, S.; Zhao, R.; van der Wal, A., et al.: Review on the science and technology of water desalination by capacitive deionization. Prog. Mater. Sci. 58, 1388–1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005

    Article  Google Scholar 

  2. Anderson, M.A.; Cudero, A.L.; Palma, J.: Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete? Electrochim. Acta 55, 3845–3856 (2010). https://doi.org/10.1016/j.electacta.2010.02.012

    Article  Google Scholar 

  3. Mekonnen, M.M.; Hoekstra, A.Y.: Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016). https://doi.org/10.1126/sciadv.1500323

    Article  Google Scholar 

  4. Oren, Y.: Capacitive deionization (CDI) for desalination and water treatment—past, present and future (a review). Desalination 228, 10–29 (2008). https://doi.org/10.1016/j.desal.2007.08.005

    Article  Google Scholar 

  5. Huang, Z.-H.; Yang, Z.; Kang, F.; Inagaki, M.: Carbon electrodes for capacitive deionization. J. Mater. Chem. A 5, 470–496 (2017). https://doi.org/10.1039/C6TA06733F

    Article  Google Scholar 

  6. Anis, S.F.; Hashaikeh, R.; Hilal, N.: Functional materials in desalination: a review. Desalination 468, 114077 (2019). https://doi.org/10.1016/j.desal.2019.114077

    Article  Google Scholar 

  7. Evans, S.F.; Ivancevic, M.R.; Wilson, D.J., et al.: Carbon polyaniline capacitive deionization electrodes with stable cycle life. Desalination 464, 25–32 (2019). https://doi.org/10.1016/j.desal.2019.04.002

    Article  Google Scholar 

  8. Tian, S.; Wu, J.; Zhang, X., et al.: Capacitive deionization with nitrogen-doped highly ordered mesoporous carbon electrodes. Chem. Eng. J. 380, 122514 (2020). https://doi.org/10.1016/j.cej.2019.122514

    Article  Google Scholar 

  9. Deng, D.; Luhasile, M.K.; Li, H., et al.: A novel layered activated carbon with rapid ion transport through chemical activation of chestnut inner shell for capacitive deionization. Desalination 531, 115685 (2022). https://doi.org/10.1016/j.desal.2022.115685

    Article  Google Scholar 

  10. Le, V.H.; Huynh, L.T.N.; Tran, T.N., et al.: Comparative desalination performance of activated carbon from coconut shell waste/carbon nanotubes composite in batch mode and single-pass mode. J. Appl. Electrochem. 51, 1313–1322 (2021). https://doi.org/10.1007/s10800-021-01575-9

    Article  Google Scholar 

  11. Kim, T.; Gorski, C.A.; Logan, B.E.: Low energy desalination using battery electrode deionization. Environ. Sci. Technol. Lett. 4, 444–449 (2017). https://doi.org/10.1021/acs.estlett.7b00392

    Article  Google Scholar 

  12. Fan, C.-S.; Tseng, S.-C.; Li, K.-C.; Hou, C.-H.: Electro-removal of arsenic(III) and arsenic(V) from aqueous solutions by capacitive deionization. J. Hazard Mater. 312, 208–215 (2016). https://doi.org/10.1016/j.jhazmat.2016.03.055

    Article  Google Scholar 

  13. Ren, Q.; Wang, G.; Wu, T., et al.: Calcined MgAl-layered double hydroxide/graphene hybrids for capacitive deionization. Ind. Eng. Chem. Res. 57, 6417–6425 (2018). https://doi.org/10.1021/acs.iecr.7b04983

    Article  Google Scholar 

  14. Vafakhah, S.; Guo, L.; Sriramulu, D., et al.: Efficient sodium-ion intercalation into the freestanding Prussian blue/graphene aerogel anode in a hybrid capacitive deionization system. ACS Appl. Mater. Interfaces 11, 5989–5998 (2019). https://doi.org/10.1021/acsami.8b18746

    Article  Google Scholar 

  15. Liu, Y.; Gao, X.; Zhang, L., et al.: Mn2O3 nanoflower decorated electrospun carbon nanofibers for efficient hybrid capacitive deionization. Desalination 494, 114665 (2020). https://doi.org/10.1016/j.desal.2020.114665

    Article  Google Scholar 

  16. Han, J.; Yan, T.; Shen, J., et al.: Capacitive deionization of saline water by using MoS2–graphene hybrid electrodes with high volumetric adsorption capacity. Environ. Sci. Technol. 53, 12668–12676 (2019). https://doi.org/10.1021/acs.est.9b04274

    Article  Google Scholar 

  17. Tan, W.; Gao, T.; Wang, Y.: Influence of surface potential on the capacitive performance of the TiO2 thin-film electrode with different crystalline forms. Langmuir 36, 3836–3842 (2020). https://doi.org/10.1021/acs.langmuir.0c00663

    Article  Google Scholar 

  18. Chen, Z.; Zhang, H.; Wu, C., et al.: A study of electrosorption selectivity of anions by activated carbon electrodes in capacitive deionization. Desalination 369, 46–50 (2015). https://doi.org/10.1016/j.desal.2015.04.022

    Article  Google Scholar 

  19. Huynh, L.T.N.; Pham, T.N.; Nguyen, T.H., et al.: Coconut shell-derived activated carbon and carbon nanotubes composite: a promising candidate for capacitive deionization electrode. Synth. Met. 265, 116415 (2020). https://doi.org/10.1016/j.synthmet.2020.116415

    Article  Google Scholar 

  20. Xu, P.; Drewes, J.E.; Heil, D.; Wang, G.: Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res. 42, 2605–2617 (2008). https://doi.org/10.1016/j.watres.2008.01.011

    Article  Google Scholar 

  21. Yan, C.; Zou, L.; Short, R.: Single-walled carbon nanotubes and polyaniline composites for capacitive deionization. Desalination 290, 125–129 (2012). https://doi.org/10.1016/j.desal.2012.01.017

    Article  Google Scholar 

  22. Moronshing, M.; Subramaniam, C.: Scalable approach to highly efficient and rapid capacitive deionization with CNT-thread as electrodes. ACS Appl. Mater. Interfaces 9, 39907–39915 (2017). https://doi.org/10.1021/acsami.7b11866

    Article  Google Scholar 

  23. Dong, Q.; Wang, G.; Qian, B., et al.: Electrospun composites made of reduced graphene oxide and activated carbon nanofibers for capacitive deionization. Electrochim. Acta 137, 388–394 (2014). https://doi.org/10.1016/j.electacta.2014.06.067

    Article  Google Scholar 

  24. Tsouris, C.; Mayes, R.; Kiggans, J., et al.: Mesoporous carbon for capacitive deionization of saline water. Environ. Sci. Technol. 45, 10243–10249 (2011). https://doi.org/10.1021/es201551e

    Article  Google Scholar 

  25. Wang, H.; Shi, L.; Yan, T., et al.: Design of graphene-coated hollow mesoporous carbon spheres as high performance electrodes for capacitive deionization. J. Mater. Chem. A 2, 4739–4750 (2014). https://doi.org/10.1039/C3TA15152B

    Article  Google Scholar 

  26. Wimalasiri, Y.; Zou, L.: Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 59, 464–471 (2013). https://doi.org/10.1016/j.carbon.2013.03.040

    Article  Google Scholar 

  27. Foo, K.Y.; Hameed, B.H.: A short review of activated carbon assisted electrosorption process: an overview, current stage and future prospects. J. Hazard. Mater. 170, 552–559 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.057

    Article  Google Scholar 

  28. Daer, S.; Kharraz, J.; Giwa, A.; Hasan, S.W.: Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 367, 37–48 (2015). https://doi.org/10.1016/j.desal.2015.03.030

    Article  Google Scholar 

  29. Thamilselvan, A.; Nesaraj, A.S.; Noel, M.: Review on carbon-based electrode materials for application in capacitive deionization process. Int. J. Environ. Sci. Technol. 13, 2961–2976 (2016). https://doi.org/10.1007/s13762-016-1061-9

    Article  Google Scholar 

  30. Zhang, X.; Yang, F.; Ma, J.; Liang, P.: Effective removal and selective capture of copper from salty solution in flow electrode capacitive deionization. Environ. Sci. Water Res. Technol. 6, 341–350 (2020). https://doi.org/10.1039/C9EW00467J

    Article  Google Scholar 

  31. Huang, Z.; Lu, L.; Cai, Z.; Ren, Z.J.: Individual and competitive removal of heavy metals using capacitive deionization. J. Hazard. Mater. 302, 323–331 (2016). https://doi.org/10.1016/j.jhazmat.2015.09.064

    Article  Google Scholar 

  32. Gaikwad, M.S.; Balomajumder, C.: Tea waste biomass activated carbon electrode for simultaneous removal of Cr(VI) and fluoride by capacitive deionization. Chemosphere 184, 1141–1149 (2017). https://doi.org/10.1016/j.chemosphere.2017.06.074

    Article  Google Scholar 

  33. You, S.-M.; Tasi, C.-K.; Millet, P.; Doong, R.-A.: Electrochemically capacitive deionization of copper (II) using 3D hierarchically reduced graphene oxide architectures. Sep. Purif. Technol. 251, 117368 (2020). https://doi.org/10.1016/j.seppur.2020.117368

    Article  Google Scholar 

  34. Chen, R.; Sheehan, T.; Ng, J.L., et al.: Capacitive deionization and electrosorption for heavy metal removal. Environ. Sci. Water Res. Technol. 6, 258–282 (2020). https://doi.org/10.1039/C9EW00945K

    Article  Google Scholar 

  35. Cao, Z.; Zhang, C.; Yang, Z., et al.: Preparation of carbon aerogel electrode for electrosorption of copper ions in aqueous solution. Materials 12, 1864 (2019). https://doi.org/10.3390/ma12111864

    Article  Google Scholar 

  36. Huang, C.-C.; Siao, S.-F.: Removal of copper ions from an aqueous solution containing a chelating agent by electrosorption on mesoporous carbon electrodes. J. Taiwan Inst. Chem. Eng. 85, 29–39 (2018). https://doi.org/10.1016/j.jtice.2018.02.005

    Article  Google Scholar 

  37. Huang, C.-C.; Su, Y.-J.: Removal of copper ions from wastewater by adsorption/electrosorption on modified activated carbon cloths. J. Hazard. Mater. 175, 477–483 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.030

    Article  Google Scholar 

  38. Huang, S.-Y.; Fan, C.-S.; Hou, C.-H.: Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. J. Hazard. Mater. 278, 8–15 (2014). https://doi.org/10.1016/j.jhazmat.2014.05.074

    Article  Google Scholar 

  39. Tang, W.; Wang, X.; Zeng, G., et al.: Electro-assisted adsorption of Zn(II) on activated carbon cloth in batch-flow mode: experimental and theoretical investigations. Environ. Sci. Technol. 53, 2670–2678 (2019). https://doi.org/10.1021/acs.est.8b05909

    Article  Google Scholar 

  40. Sesuk, T.; Tammawat, P.; Jivaganont, P., et al.: Activated carbon derived from coconut coir pith as high performance supercapacitor electrode material. J. Energy Storage 25, 100910 (2019). https://doi.org/10.1016/j.est.2019.100910

    Article  Google Scholar 

  41. Guo, S.; Peng, J.; Li, W., et al.: Effects of CO2 activation on porous structures of coconut shell-based activated carbons. Appl. Surf. Sci. 255, 8443–8449 (2009). https://doi.org/10.1016/j.apsusc.2009.05.150

    Article  Google Scholar 

  42. Nguyen, T.T.; Huynh, L.T.N.; Pham, T.N., et al.: Enhanced capacitive deionization performance of activated carbon derived from coconut shell electrodes with low content carbon nanotubes–graphene synergistic hybrid additive. Mater. Lett. 292, 129652 (2021). https://doi.org/10.1016/j.matlet.2021.129652

    Article  Google Scholar 

  43. Ngo, H.L.; Nguyen, N.T.; Ho, T.T.N., et al.: A low-cost and eco-friendly fabrication of an MCDI-utilized PVA/SSA/GA cation exchange membrane. Green Process. Synth. 11, 563–571 (2022). https://doi.org/10.1515/gps-2022-0056

    Article  Google Scholar 

  44. Reddy, K.S.K.; Al Shoaibi, A.; Srinivasakannan, C.: A comparison of microstructure and adsorption characteristics of activated carbons by CO2 and H3PO4 activation from date palm pits. New Carbon Mater. 27, 344–351 (2012). https://doi.org/10.1016/S1872-5805(12)60020-1

    Article  Google Scholar 

  45. Allwar, A.; Noor, A.M.; Nawi, M.A.M.: Preparation and characterization of microporous activated carbon from oil palm shell by physical activation using purified nitrogen. EKSAKTA J. Sci. Data Anal. 12 (2011)

  46. Wenzhong, S.; Zhijie, L.; Yihong, L.: Surface chemical functional groups modification of porous carbon. Recent Patents Chem. Eng. 1, 27–40 (2007)

    Google Scholar 

  47. Sufiani, O.; Elisadiki, J.; Machunda, R.L.; Jande, Y.A.C.: Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications. J. Electroanal. Chem. 848, 113328 (2019). https://doi.org/10.1016/j.jelechem.2019.113328

    Article  Google Scholar 

  48. Şahin, Ö.; Yardim, Y.; Baytar, O.; Saka, C.: Enhanced electrochemical double-layer capacitive performance with CO2 plasma treatment on activated carbon prepared from pyrolysis of pistachio shells. Int. J. Hydrog. Energy 45, 8843–8852 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.128

    Article  Google Scholar 

  49. Lee, B.; Park, N.; Kang, K.S., et al.: Enhanced capacitive deionization by dispersion of CNTs in activated carbon electrode. ACS Sustain. Chem. Eng. 6, 1572–1579 (2018). https://doi.org/10.1021/acssuschemeng.7b01750

    Article  Google Scholar 

  50. Kim, T.; Yoon, J.: CDI Ragone plot as a functional tool to evaluate desalination performance in capacitive deionization. RSC Adv. 5, 1456–1461 (2015). https://doi.org/10.1039/C4RA11257A

    Article  Google Scholar 

  51. Goldin, M.M.; Volkov, A.G.; Namychkin, D.N.: Adsorption of copper, silver, and zinc cations on polarized activated carbons. J. Electrochem. Soc. 152, E167 (2005). https://doi.org/10.1149/1.1874712

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by Vietnam National University, Ho Chi Minh City (VNU-HCM) under Grant No. 562-2020-18-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le Thanh Nguyen Huynh.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1052 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huynh, L.T.N., Nguyen, H.A., Pham, H.V. et al. Electrosorption of Cu(II) and Zn(II) in Capacitive Deionization by KOH Activation Coconut-Shell Activated Carbon. Arab J Sci Eng 48, 551–560 (2023). https://doi.org/10.1007/s13369-022-07305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07305-3

Keywords

Navigation