Skip to main content

Advertisement

Log in

Shortening Recovery Time with Bypass Breaker for Resistive Superconductor Fault Current Limiters

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Many modern limiting methods have been developed for power systems in recent years. Resistive superconductor fault current limiter (R-SFCL), one of the modern limiting methods, has advantages such as small size and low cost. R-SFCL, which theoretically transmits energy without loss in normal operation, becomes high resistance in case of fault and reduces fault current level. However, R-SFCL, which rapidly increases its resistance during a fault, cannot immediately switch to superconductivity after the fault. During this period, which is called the recovery time, R-SFCL causes unwanted voltage drops and power losses under normal operating conditions. Therefore, recovery time is an important design parameter that should be kept short. With the bypass breaker proposed in this study, the recovery time was shortened, and voltage stability was improved. In addition, the system’s reliability is increased by providing breakers’ controls from two different points instead of a single point. This method is a hybrid system where limiting and protection elements are combined in one system. Modeling and simulations were performed in MATLAB/Simulink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Alahmed, A.S.; Almuhaini, M.M.: A microgrid testbed with hybrid renewables, energy storage, and controllable loads. Arab. J. Sci. Eng. (2022). https://doi.org/10.1007/s13369-022-07152-2

    Article  Google Scholar 

  2. Lin, B., et al.: Test of maximum endurable quenching voltage of YBCO-coated conductors for resistive superconducting fault current limiter. IEEE Trans. Appl. Supercond. 22(3), 3–6 (2012). https://doi.org/10.1109/TASC.2011.2178380

    Article  Google Scholar 

  3. Kesava Rao, G.; Gangwar, T.; Sarangi, S.: Advanced relaying for DG-penetrated distribution system. Arab. J. Sci. Eng. 46(10), 9649–9661 (2021). https://doi.org/10.1007/s13369-021-05392-2

    Article  Google Scholar 

  4. Guillen, D.; Salas, C.; Trillaud, F.; Castro, L.M.; Queiroz, A.T.; Sotelo, G.G.: Impact of resistive superconducting fault current limiter and distributed generation on fault location in distribution networks. Electr. Power Syst. Res. 186(June 2019), 106419 (2020). https://doi.org/10.1016/j.epsr.2020.106419

    Article  Google Scholar 

  5. Luo, F.; Zhang, C.; Liu, F.; Bai, S.; Xiang, L.; Zhong, H.: Research on limiting measures for DC component of short circuit current based on fault current limiter and selection of installation site. In: 2019 Asia Power Energy Engineering Conference APEEC 2019, pp. 89–93 (2019). https://doi.org/10.1109/APEEC.2019.8720665

  6. Blair, S.M.; Booth, C.D.; Burt, G.M.: Current-time characteristics of resistive superconducting fault current limiters. IEEE Trans. Appl. Supercond. 22(2), 5600205 (2012). https://doi.org/10.1109/TASC.2012.2187291

    Article  Google Scholar 

  7. Zhang, J.; Dai, S.; Ma, T.; Li, Y.; He, D.: Physica C: superconductivity and its applications current limiting characteristics of a resistance-inductance type superconducting fault current limiter. Phys. C Supercond. Appl. 601(July), 1354105 (2022). https://doi.org/10.1016/j.physc.2022.1354105

    Article  Google Scholar 

  8. Uma Maheswara Rao, M.; Subba Rami Reddy, C.; Lakshmi Narayana, P.; Rao, D.S.N.M.; Kasireddy, I.: Stability improvement in microgrids using hybridization of RSFCL along with fuzzy based SAPF. Int. J. Interact. Des. Manuf. (2022). https://doi.org/10.1007/s12008-022-00919-9

    Article  Google Scholar 

  9. Noe, M.; Steurer, M.: High-temperature superconductor fault current limiters: concepts, applications, and development status. Supercond. Sci. Technol. (2007). https://doi.org/10.1088/0953-2048/20/3/R01

    Article  Google Scholar 

  10. Kudymow, A.; Noe, M.; Schacherer, C.; Kinder, H.; Prusseit, W.: Investigation of YBCO coated conductor for application in resistive superconducting fault current limiters. IEEE Trans. Appl. Supercond. 17(2), 3499–3502 (2007). https://doi.org/10.1109/TASC.2007.899578

    Article  Google Scholar 

  11. Shen, B.; Chen, Y.; Li, C.; Wang, S.; Chen, X.: Superconducting fault current limiter (SFCL): experiment and the simulation from finite-element method (FEM) to power/energy system software. Energy 234, 121251 (2021). https://doi.org/10.1016/j.energy.2021.121251

    Article  Google Scholar 

  12. Kar, S.; Rao, V.V.: Physica C: superconductivity and its applications step-by-step design of a single phase 3. 3 kV/200 a resistive type superconducting fault current limiter (R-SFCL) and cryostat. Phys. C Supercond. Appl. 550(September 2017), 107–116 (2018). https://doi.org/10.1016/j.physc.2018.04.011

    Article  Google Scholar 

  13. Hatata, A.Y.; Ebeid, A.S.; El-Saadawi, M.M.: Application of resistive super conductor fault current limiter for protection of grid-connected DGs. Alex. Eng. J. 57(4), 4229–4241 (2018). https://doi.org/10.1016/j.aej.2018.11.009

    Article  Google Scholar 

  14. Hobl, A.; Goldacker, W.; Dutoit, B.; Martini, L.; Petermann, A.; Tixador, P.: Design and production of the ECCOFLOW resistive fault current limiter. IEEE Trans. Appl. Supercond. 23(3), 18–21 (2013). https://doi.org/10.1109/TASC.2013.2238288

    Article  Google Scholar 

  15. Elschner, S., et al.: ENSYSTROB—design, manufacturing and test of a 3-phase resistive fault current limiter based on coated conductors for medium voltage application. Phys. C Supercond. Appl. 482, 98–104 (2012). https://doi.org/10.1016/j.physc.2012.04.025

    Article  Google Scholar 

  16. Zhu, J.; Zheng, X.; Qiu, M.; Zhang, Z.; Li, J.; Yuan, W.: Application simulation of a resistive type superconducting fault current limiter (SFCL) in a transmission and wind power system. Energy Procedia 75, 716–721 (2015). https://doi.org/10.1016/j.egypro.2015.07.498

    Article  Google Scholar 

  17. Siyuan, L., et al.: Physica C: superconductivity and its applications A novel simplified modeling method based on R-Q curve of resistive type SFCL in power systems. Supercond. Appl. 563(April), 82–87 (2019). https://doi.org/10.1016/j.physc.2019.04.016

    Article  Google Scholar 

  18. Pascal, P.T.; Badel, A.; Auran, G.; Pereira, G.S.: Superconducting fault current limiter for ship grid simulation and demonstration. IEEE Trans. Appl. Supercond. 27(2), 1–5 (2017). https://doi.org/10.1109/TASC.2017.2674964

    Article  Google Scholar 

  19. Yang, K., et al.: Direct-current vacuum circuit breaker with superconducting fault-current limiter. IEEE Trans. Appl. Supercond. 28(1), 1–7 (2018). https://doi.org/10.1109/TASC.2017.2767500

    Article  Google Scholar 

  20. Yadav, S.; Bharati, K.; Tewari, V.: Superconducting fault current limiter—a review. Int. J. Appl. Eng. Res. 14(2), 1–6 (2019)

    Google Scholar 

  21. Alam, M.S.; Abido, M.A.Y.; El-Amin, I.: Fault current limiters in power systems: a comprehensive review. Energies (2018). https://doi.org/10.3390/en11051025

    Article  Google Scholar 

  22. Liang, S., et al.: Study on quenching characteristics and resistance equivalent estimation method of second-generation high temperature superconducting tape under. Materials 12, 2374 (2019)

    Article  Google Scholar 

  23. Chen, X., et al.: Superconducting fault current limiter (SFCL) for fail-safe DC-DC conversion: from power electronic device to micro grid protection. Superconductivity 1(1), 100003 (2022). https://doi.org/10.1016/j.supcon.2022.100003

    Article  Google Scholar 

  24. Sheng, J., et al.: Study of recovery characteristics of 2nd generation HTS tapes with different stabilizers for resistive type superconducting fault current limiters. Phys. C Supercond. Appl. 521–522, 33–37 (2016). https://doi.org/10.1016/j.physc.2016.01.002

    Article  Google Scholar 

  25. Zhang, X.; Ruiz, H.S.; Zhong, Z.; Coombs, T.A.: Implementation of resistive type superconducting fault current limiters in electrical grids: performance analysis and measuring of optimal locations, pp. 1–18 (2015). http://arxiv.org/abs/1508.01162

  26. Kwon, N.Y., et al.: The effects of a stabilizer thickness of the YBCO coated conductor (CC) on the quench/recovery characteristics. IEEE Trans. Appl. Supercond. 20(3), 1246–1249 (2010). https://doi.org/10.1109/TASC.2009.2039864

    Article  Google Scholar 

  27. Luo, Z.; Zhi, X.; Zhu, S.; Wang, K.; Qiu, L.: Study on the recovery characteristics of disc-type superconducting fault current limiter coils from the perspective of boiling heat transfer and bubble behaviors. SSRN Electron. J. 125(May), 103518 (2022). https://doi.org/10.2139/ssrn.4011554

    Article  Google Scholar 

  28. Shirai, Y.; Yoneda, K.; Higa, D.; Shiotsu, M.; Honda, Y.; Isojima, S.: Recovery characteristics of GdBCO superconducting tape with cooling fins and Teflon coating for resistive fault current limiter. IEEE Trans. Appl. Supercond. 26(3), 8–11 (2016). https://doi.org/10.1109/TASC.2016.2524456

    Article  Google Scholar 

  29. Tamashima, M.; Takaya, S.; Shirai, Y.; Shiotsu, M.; Honda, G.; Isojima, S.: Improvement of recovery characteristics of REBCO tape with several surface conditions for resistive fault current limiter. IEEE Trans. Appl. Supercond. 27(4), 2–6 (2017). https://doi.org/10.1109/TASC.2017.2669150

    Article  Google Scholar 

  30. Du, H.I.: Evaluation on resistance tendency and recovery characteristics of 2G wire with insulation layer. IEEE Trans. Appl. Supercond. 23(3), 0–3 (2013). https://doi.org/10.1109/TASC.2013.2240371

    Article  Google Scholar 

  31. Kempski, A.; Rusinski, J.; Hajdasz, S.: Analysis of recovery time of HTS tapes with electrical insulation layers for superconducting fault current limiters under load conditions. IEEE Trans. Appl. Supercond. (2019). https://doi.org/10.1109/TASC.2019.2952315

    Article  Google Scholar 

  32. Gorbunova, D.A.; Kumarov, D.R.; Scherbakov, V.I.; Sim, K.; Hwang, S.: Influence of polymer coating on SFCL recovery under load. Prog. Supercond. Cryog. 12(1), 44–47 (2020). https://doi.org/10.9714/psac.2019.21.4.044

    Article  Google Scholar 

  33. Liang, H.; Chen, Y.; Duan, R.; Lu, Y.; Sheng, J.: Numerical study on the on-grid performance of superconducting cable cooperated with R-SFCL. IEEE Trans. Appl. Supercond. 32(4), 4–8 (2022). https://doi.org/10.1109/TASC.2022.3141039

    Article  Google Scholar 

  34. Lee, H.; Asif, M.; Park, K.; Mun, H.; Lee, B.: Appropriate protection scheme for DC grid based on the half bridge modular multilevel converter system. Energies 12, 1837 (2019)

    Article  Google Scholar 

  35. Liang, S.; Xia, Z.; Wang, Z.: Tests and analysis of a small-scale hybrid-type. IEEE Trans. Appl. Supercond. 28(4), 1–6 (2018)

    Article  Google Scholar 

  36. Lee, B.W., et al.: Design and experiments of novel hybrid type superconducting fault current limiters. IEEE Trans. Appl. Supercond. 18(2), 624–627 (2008). https://doi.org/10.1109/TASC.2008.920785

    Article  Google Scholar 

  37. Hyun, O.B.; Park, K.B.; Sim, J.; Kim, H.R.; Yim, S.W.; Oh, I.S.: Introduction of a hybrid SFCL in KEPCO grid and local points at issue. IEEE Trans. Appl. Supercond. 19(3), 1946–1949 (2009). https://doi.org/10.1109/TASC.2009.2018256

    Article  Google Scholar 

  38. Lee, S.; Yoon, J.; Lee, B.: Analysis model development and specification proposal of hybrid superconducting fault current limiter (SFCL). Phys. C Supercond. Appl. 470(20), 1615–1620 (2010). https://doi.org/10.1016/j.physc.2010.05.174

    Article  Google Scholar 

  39. Seo, I.Y., et al.: Empirical modeling of cryogenic system for hybrid SFCL using support vector regression. J. Supercond. Nov. Magn. 26(4), 1265–1273 (2013). https://doi.org/10.1007/s10948-012-1965-7

    Article  Google Scholar 

  40. Seo, S.; Kim, S.; Moon, Y.; Lee, B.: A hybrid superconducting fault current limiter for enhancing transient stability in Korean power systems. Phys. C Supercond. Appl. 494, 331–334 (2013). https://doi.org/10.1016/j.physc.2013.04.025

    Article  Google Scholar 

  41. Zhu, J., et al.: Experimental investigation of current limiting characteristics for a novel hybrid superconducting fault current limiter (SFCL) with biased magnetic field. J. Phys. Conf. Ser. (2020). https://doi.org/10.1088/1742-6596/1559/1/012104

    Article  Google Scholar 

  42. Barzegar-Bafrooei, M.R.; Foroud, A.A.; Ashkezari, J.D.; Niasati, M.: On the advance of SFCL: a comprehensive review. IET Gener. Transm. Distrib. 13(17), 3745–3759 (2019). https://doi.org/10.1049/iet-gtd.2018.6842

    Article  Google Scholar 

  43. Lim, S.H.; Kim, J.S.; Kim, J.C.: Analysis on protection coordination of hybrid SFCL with protective devices in a power distribution system. IEEE Trans. Appl. Supercond. 21(3 PART 2), 2170–2173 (2011). https://doi.org/10.1109/TASC.2010.20935931

    Article  Google Scholar 

  44. Belkhiri, S.; Ghemari, Z.: Comparative study of solid and thin-layers superconducting fault current limiters SFCL for electrical network transient stability improvement. J. Supercond. Nov. Magn. 35(3), 679–688 (2022). https://doi.org/10.1007/s10948-021-06128-x

    Article  Google Scholar 

  45. Chen, Y., et al.: HTS joint resistance for high-field magnets: experiment and temperature-dependent modeling. J. Supercond. Nov. Magn. 35(5), 1089–1098 (2022). https://doi.org/10.1007/s10948-022-06181-0

    Article  Google Scholar 

  46. Aly, M.M.; Mohamed, E.A.: Comparison between resistive and inductive superconducting fault current limiters for fault current limiting. In: Proceedings—ICCES 2012, 2012 International Conference on Computer Engineering and Systems, pp. 227–232 (2012). https://doi.org/10.1109/ICCES.2012.6408518

  47. Chen, Y.; Li, S.; Sheng, J.; Jin, Z.; Hong, Z.; Gu, J.: Experimental and numerical study of co-ordination of resistive-type superconductor fault current limiter and relay protection. J. Supercond. Nov. Magn. 26(11), 3225–3230 (2013). https://doi.org/10.1007/s10948-013-2181-9

    Article  Google Scholar 

  48. De Sousa, W.T.B.; Polasek, A.; Silva, F.A.; Dias, R.; Jurelo, A.R.; De Andrade, R.: Simulations and tests of MCP-BSCCO-2212 superconducting fault current limiters. IEEE Trans. Appl. Supercond. 22(2), 5600106 (2012). https://doi.org/10.1109/TASC.2012.2187189

    Article  Google Scholar 

  49. Blair, S.M.; Booth, C.D.; Burt, G.M.; Bright, C.G.: Application of multiple resistive superconducting fault-current limiters for fast fault detection in highly interconnected distribution systems. IEEE Trans. Power Deliv. 28(2), 1120–1127 (2013). https://doi.org/10.1109/TPWRD.2012.2228011

    Article  Google Scholar 

  50. Mafra, G.R.F.Q.; Sotelo, G.G.; Fortes, M.Z.; De Sousa, W.T.B.: Application of resistive superconducting fault current limiters in offshore oil production platforms. Electr. Power Syst. Res. 144, 107–114 (2017). https://doi.org/10.1016/j.epsr.2016.11.006

    Article  Google Scholar 

  51. Schettino, H.J.; Andrade, R.D., Jr.; Polasek, A.; Kottonau, D.; De Sousa, W.T.B.: A strategy for protection of high voltage systems using resistive superconducting fault current limiters. Phys. C: Supercond. Appl. (2018). https://doi.org/10.1016/j.physc.2017.11.004

    Article  Google Scholar 

  52. Dondapati, R.S.; Kumar, A.; Kumar, G.R.; Usurumarti, P.R.; Dondapati, S.: Superconducting magnetic energy storage (SMES) devices integrated with resistive type superconducting fault current limiter (SFCL) for fast recovery time. J. Energy Storage 13, 287–295 (2017). https://doi.org/10.1016/j.est.2017.07.005

    Article  Google Scholar 

  53. Nemdili, S.; Belkhiat, S.: Modeling and simulation of resistive superconducting fault-current limiters. J. Supercond. Nov. Magn. 25(7), 2351–2356 (2012). https://doi.org/10.1007/s10948-012-1685-z

    Article  Google Scholar 

  54. Xue, S.; Gao, F.; Sun, W.; Li, B.: Protection principle for a DC distribution system with a resistive superconductive fault current limiter. Energies 8(6), 4839–4852 (2015). https://doi.org/10.3390/en8064839

    Article  Google Scholar 

  55. Dai, S., et al.: Development and test of a 220 kV/1.5 kA resistive type superconducting fault current limiter. Phys. C Supercond. Appl. 565(July), 1253501 (2019). https://doi.org/10.1016/j.physc.2019.06.004

    Article  Google Scholar 

  56. Dutta, S.; Babu, B.C.: Modelling and analysis of resistive superconducting fault current limiter. In: IEEE TechSym 2014—2014 IEEE Students’ Technology Symposium, pp. 362–366 (2014). https://doi.org/10.1109/TechSym.2014.6808076

  57. Qian, K.; Guo, Z.; Terao, Y.; Ohsaki, H.: Electromagnetic and thermal design of superconducting fault current limiters for DC electric systems using superconducting (2017)

  58. Manohar, P.; Ahmed, W.: Superconducting fault current limiter to mitigate the effect of DC line fault in VSC-HVDC system. In: 2012 International Conference on Power, Signals, Controls and Computation, EPSCICON 2012, no. October 2016 (2012). https://doi.org/10.1109/EPSCICON.2012.6175282

  59. Elmitwally, A.: Proposed hybrid superconducting fault current limiter for distribution systems. Int. J. Electr. Power Energy Syst. 31(10), 619–625 (2009). https://doi.org/10.1016/j.ijepes.2009.06.002

    Article  Google Scholar 

  60. Langston, J.; Steurer, M.; Woodruff, S.; Baldwin, T.; Tang, J.: A generic real-time computer simulation model for superconducting fault current limiters and its application in system protection studies. IEEE Trans. Appl. Supercond. 15(2 PART II), 2090–2093 (2005). https://doi.org/10.1109/TASC.2005.849459

    Article  Google Scholar 

  61. Song, W., et al.: Experimental and simulation study of resistive helical HTS fault current limiters: quench and recovery characteristics. IEEE Trans. Appl. Supercond. (2021). https://doi.org/10.1109/TASC.2021.3061958

    Article  Google Scholar 

  62. Yılmaz, B.; Gençoğlu, M.T.: Modeling the limiting performance of resistive superconductor fault current limiters for 2G HTS tape. Firat Univ. J. Exp. Comput. Eng. 1(2), 49–59 (2022). https://doi.org/10.5505/fujece.2022.32042

    Article  Google Scholar 

  63. Kim, S.Y.; Kim, J.O.: Reliability evaluation of distribution network with DG considering the reliability of protective devices affected by SFCL. IEEE Trans. Appl. Supercond. 21(5), 3561–3569 (2011). https://doi.org/10.1109/TASC.2011.2163187

    Article  Google Scholar 

  64. Kulkarni, S.; Dixit, M.; Pal, K.: Study on recovery performance of high Tc superconducting tapes for resistive type superconducting fault current limiter applications. Phys. Procedia 36, 1231–1235 (2012). https://doi.org/10.1016/j.phpro.2012.06.281

    Article  Google Scholar 

  65. Zhang, J., et al.: Fabrication and tests of a resistive-type superconducting fault current limiter module based on coated conductors. J. Supercond. Nov. Magn. 32(6), 1589–1597 (2019). https://doi.org/10.1007/s10948-018-4869-3

    Article  MathSciNet  Google Scholar 

  66. Lee, S.R.; Lee, J.J.; Yoon, J.; Kang, Y.W.; Hur, J.: Protection scheme of a 154-kV SFCL test transmission line at the KEPCO power testing center. IEEE Trans. Appl. Supercond. 27(4), 2–6 (2017). https://doi.org/10.1109/TASC.2017.2669159

    Article  Google Scholar 

  67. Romphochai, S.; Hongesombut, K.: Calculation of current limiting reactance of hybrid SFCL for low voltage ride-through capability enhancement in DFIG wind farms. Turk. J. Electr. Eng. Comput. Sci. 25, 4685–4695 (2017). https://doi.org/10.3906/elk-1703-53

    Article  Google Scholar 

  68. Kim, C.H.; Seo, H.C.; Rhee, S.B.; Kim, C.H.: Decision of optimal insertion resistance of superconducting fault current limiter for reducing asymmetrical fault current. In: 12th IET International Conference on Developments in Power System Protection DPSP 2014, pp 1–4 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bugra Yilmaz.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, B., Gencoglu, M.T. Shortening Recovery Time with Bypass Breaker for Resistive Superconductor Fault Current Limiters. Arab J Sci Eng 48, 6205–6218 (2023). https://doi.org/10.1007/s13369-022-07297-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07297-0

Keywords

Navigation