Skip to main content
Log in

Green Synthesis of Magnesium Oxide Nanoparticles Using Mariposa christia vespertilionis Leaves Extract and Its Antimicrobial Study Toward S. aureus and E. coli

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Magnesium oxide nanoparticles (MgO-NPs) have received considerable attention from researchers these days because of their wide-ranging applications in areas such as pharmaceuticals, manufacturing, and dermatology. Therefore, in the present study, we have synthesized MgO-NPs with a green approach. The MgO-NPs from aqueous leaf extract of Mariposa christia vespertilionis have been successfully synthesized and checked its resistance to antimicrobial activity. The green-synthesized MgO-NPs samples were calcined at three different calcination temperatures (400 °C, 600 °C, and 900 °C) and subjected to characterization. The antimicrobial activity of the MgO-NPs against gram-positive (S. aureus) bacteria and gram-negative (E. coli) bacteria was also established. UV–Vis spectroscopy was used to confirm the formation of the nanoparticles. Based on Fourier transform infrared spectroscopy, the Mg–O stretching is found in the range of 400 cm−1 to 500 cm−1. The scanning electron microscopy showed the spherical shape of the MgO-NPs and transmission electron microscopy revealed that the smallest crystallite size of MgO-NPs calcined at 600 °C was found to be around 17 nm which is less than the size of the MgO-NPs calcined at 400 °C (90 nm) and 900 °C (158 nm). X-ray diffractometer diffractograms show highly crystalline with hexagonal wurtzite structure. Finally, the antimicrobial activities of MgO-NPs showed an efficient effect against gram-positive bacteria, but a negative effect against gram-negative bacteria. The study revealed that the prepared MgO-NPs have shown a promising result as antibacterial agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bhat, I.U.H., Anwar, S.J., Subramaniam, E., Shalla, A.H.: Nanoparticles; Their Use as Antibacterial and DNA Cleaving Agents. In: Nanomaterials for Healthcare, Energy and Environment, Adv. Struct. Mater. Pp. 71-85. Springer Nature Singapore Pte Ltd. (2019).https://doi.org/10.1007/978-981-13-9833-9_4

  2. Khan, I.; Saeed, K.; Khan, I.: Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12(7), 908–931 (2019). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  Google Scholar 

  3. Agrawal, S.; Bhatt, M.; Rai, S.K.; Bhatt, A.; Dangwal, P.; Agrawal, P.K.: Silver nanoparticles and its potential applications: a review. J. Pharmacogn. Phytochem. 7(2), 930–937 (2019)

    Google Scholar 

  4. Essien, E.R.; Atasie, V.N.; Okeafor, A.O.; Nwude, D.O.: Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. Int. Nano Lett. 10, 43–48 (2020)

    Article  Google Scholar 

  5. Abinaya, S.; Kavitha, H.P.; Prakash, M.; Muthukrishnaraj, A.: Green synthesis of magnesium oxide nanoparticles and its applications: a review. Sustain. Chem. Pharm. 19, 100368 (2021). https://doi.org/10.1016/j.scp.2020.100368

    Article  Google Scholar 

  6. Bandeira, M.; Gionavela, M.; Roesch-Ely, M.; Devine, D.M.: Green synthesis of zinc oxide nanoparticles: a review of the synthesis methodology and mechanism or formation. Sustain. Chem. Pharm. 15, 100223 (2020). https://doi.org/10.1016/j.scp.2020.100223

    Article  Google Scholar 

  7. Prasanth, R.; Kumar, S.D.; Jayalakshmi, A.; Singaravelu, G.; Govindaraju, K.; Kumar, V.G.: Green synthesis of magnesium oxide nanoparticles and their antibacterial activity. Indian. J. Geo. Mar. Sci. 48, 1210–1215 (2019)

    Google Scholar 

  8. Duong, T.H.Y.; Nguyen, T.N.; Oanh, H.T.; Thi, T.A.D.; Giang, L.N.T.; Phuong, H.T.; Anh, N.T.; Nguyen, B.M.; Quang, V.T.; Le, G.T.; Nguyen, T.V.: Synthesis of magnesium oxide nanoplates and their application in nitrogen dioxide and sulfur dioxide adsorption. J. Chem. 2, 1–9 (2019). https://doi.org/10.1155/2019/4376429

    Article  Google Scholar 

  9. Saidi, N.S.M.; Yusoff, H.M.; Bhat, I.U.H.; Appalasamy, S.; Hassim, A.D.M.; Yusoff, F.; Asari, A.; Wahab, N.H.A.: Stability and antibacterial properties of green synthesis silver nanoparticles using Nephelium lappaceum peel extract. Malays. J. Anal. Sci. 24(6), 940–953 (2020)

    Google Scholar 

  10. Yusoff, H.M.; Idris, N.H.; Hipul, N.F.; Yusof, N.F.M.; Izham, N.Z.M.; Bhat, I.U.H.: Green synthesis of zinc oxide nanoparticles using black tea extract and its potential as anode material in sodium-ion batteries. Malays. J. Chem. 22(20), 43–51 (2020)

    Google Scholar 

  11. Malhotra, B.D.; Ali, M.A.: Nanomaterials in biosensors: fundamentals and applications. Nanomater. Biosens. (2018). https://doi.org/10.1016/B978-0-323-44923-6.00001-7

    Article  Google Scholar 

  12. Munjal, S.; Singh, A.; Kumar, V.: Synthesis and characterization of MgO nanoparticles by orange fruit waste through green method. Int. J. Adv. Chem. 4(9), 36–42 (2017). https://doi.org/10.20431/2349-0403.0409005

    Article  Google Scholar 

  13. Yusoff, H.M.; Chandran, P.D.B.; Sayuti, F.A.; Kan, S.-U.; Radzi, S.A.M.; Yong, F.-S.J.; Lee, O.J.; Chia, P.W.: Highly efficient, recyclable and alternative method of synthesizing phenols from phenylboronic acids using non-endangered metal: samarium oxide. Inorg. Chem. Commun. 130, 108749 (2021). https://doi.org/10.1016/j.inoche.2021.108749

    Article  Google Scholar 

  14. Velmurugan, R., Incharoensakdi, A.: Nanoparticles and organic matter. In: Nanomaterials in Plants, Algae, and Microorganisms, pp.407-428. Academic Press, United States (2018)

  15. Yusoff, H.M.; Hazwani, N.U.; Hassan, N.; Izwani, F.: Comparison of sol gel and dehydration magnesium oxide (MgO) as a catalyst in Michael addition reaction. Int. J. Integr. Eng. 7(3), 43–50 (2015)

    Google Scholar 

  16. Marina, B.; Possan, A.L.; Pavin, S.S.; Raota, C.S.; Vebber, M.C.; Giovanela, M.; Roesch-Ely, M.; Devine, D.M.: Crespo JS Mechanism of formation, characterization and cytotoxicity of green synthesized zinc oxide nanoparticles obtained from Ilex paraguariensis leaves extract. Nano-Struct Nano-Objects (2020). https://doi.org/10.1016/j.nanoso.2020.100532

    Article  Google Scholar 

  17. Anwar, S.J.; Bhat, I.U.H.; Yusoff, H.M.; Razali, M.H.; Kadir, M.A.; Ern, L.K.: Brown algae-based preparation, characterization and application of Pd nanocatalyst for enhanced reductive azo dye degradation. Clean. Eng. Technol. 4, 100172 (2021)

    Article  Google Scholar 

  18. Vergheese, M.; Vishal, S.K.: Green synthesis of magnesium oxide nanoparticles using Trigonella foenum-graecum leaf extract and its antibacterial activity. J. pharmacogn. Phytochem. 7, 1193–1200 (2018)

    Google Scholar 

  19. Palanisamy, G.; Pazhanivel, T.: Green synthesis of MgO nanoparticles for antibacterial activity. Int. Res. J. Eng. Technol. 4, 137–141 (2017)

    Google Scholar 

  20. Suresh, J.; Yuvakkumar, R.; Sundrarajan, M.; Hong, S.I.: Green synthesis of magnesium oxide nanoparticles. Adv. Mater. Res. 952, 141–144 (2014)

    Article  Google Scholar 

  21. Lee, J.J., Yazan, L.S., Kassim, N.K., Che, Abdullah, C.A., Esa, N., Lim, P.C.: Tan DC. Cytotoxic activity of christia vespertilionis root and leaf extract and fractions against breast cancer cell lines. Molecules. 25 (11), 2610 (2020). Doi: https://doi.org/10.3390/molecules25112610

  22. Murugesu, S.; Perumal, V.; Balan, T.; Hamzan, N.A.S.; Shahrim, N.S.S.; Sharrizal, N.S.R.; Hin, L.W.: A review on Christia vespertilionis: a new emerging medicinal plant. Fabad J. Pharm. Sci. 45(3), 269–277 (2020)

    Google Scholar 

  23. Ariff, M.A.M.; Tukiman, S.; Razak, N.A.A.; Osman, M.S.; Jaapar, J.: Optimization of supercritical fluid extraction of Mariposa Christia vespertilionis leaves towards antioxidant using response surface methodology. J. Phys. Conf. Ser. 1349, 012054 (2019)

    Article  Google Scholar 

  24. Ravindran, M.; Dash, G.K.; Sengamalam, R.; Vignesh, R.: Red Butterfly wing (Christia vespertilionis (L. f) Bakh F.): a potential anticancer and antiplasmodial herb under threat of survival in Malaysia. Malays. J. Med. Health. Sci. 15(3), 154 (2019)

    Google Scholar 

  25. Mutalib, N.A.; Latip, N.A.: Synergistic interactions between Christia vespertilionis leaves extract and chemotherapy drug cyclophosphamide on WRL-68 cell line. Asian J. Pharm. Res. Dev. 7(3), 109–113 (2019). https://doi.org/10.22270/ajprd.v7i3.488

    Article  Google Scholar 

  26. Smitha, S.; Jain, R.: Anatomical profiling and phytochemical analysis of Christia Vespertilionis (L. F.) Bakh F. Int. J. Pharm. Biol. Sci. 9(1), 40–50 (2019)

    Google Scholar 

  27. Osman, M.S.; Bashah, N.A.A.; Amri, N.; Kasmir, S.I.; Safri, A.I.D.; Ariff, M.A.M.; Yaakob, N.: Biosynthesis of gold nanoparticles using aqueous extracts of Mariposa Cristia Vespertillonis: influence of pH on its colloidal stability. Mater. Today: Proceedings. 5, 22050–22055 (2018)

    Google Scholar 

  28. Yusoff, H.M.; Rafit, F.A.; Mohamad, F.I.; Hassan, N.; Daud, A.I.: The effects of calcination temperatures in the synthesis of nanocrystalline magnesium oxide via Sol-Gel technique. Appl. Mech. Mater. 865, 36–42 (2017)

    Article  Google Scholar 

  29. Saleh, T.A.: Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies. Environ. Technol. Innov. (2021). https://doi.org/10.1016/j.eti.2021.101821

    Article  Google Scholar 

  30. Balraj, B.; Senthilkumar, N.; Potheher, I.V.; Arulmozhi, M.: Characterization, antibacterial, anti-arthritic and in-vitro cytotoxic potentials of biosynthesized magnesium oxide nanomaterial. Mater. Sci. Eng. 231, 121–127 (2018). https://doi.org/10.1016/j.mseb.2018.10.011

    Article  Google Scholar 

  31. Azam, A.; Ahmed, A.S.; Oves, M.; Khan, M.S.; Habib, S.S.; Memic, A.: Antimicrobial activity of metal oxide nanoparticles against gram-positive and gram-negative bacteria: a comparative study. Int. J. Nanomed. 7, 6003–6009 (2012)

    Article  Google Scholar 

  32. El-Seedi, H.R.; El-Shabasy, R.M.; Khalifa, S.A.M.; Saeed, A.; Shah, A.; Shah, R.; Iftikhar, F.J.; Abdel-Daim, M.M.; Omri, A.; Hajrahand, N.H.; Sabir, J.S.M.; Zou, X.; Halabi, M.F.; Sarhann, W.; Guo, W.: Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv. 9(42), 24539 (2019). https://doi.org/10.1039/C9RA02225B

    Article  Google Scholar 

  33. Pugazhendhi, A.; Prabhu, R.; Muguganantham, K.; Shanmuganathan, R.; Natarajan, S.: Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgO NPs) using aqueous extract of Sargassum wightii. J. Photochem. Photobiol. B, Biol. 195, 86–97 (2018)

    Google Scholar 

  34. Wunderlich, B.: Thermal Analysis. In: Encyclopedia of Materials: Science and Technology. pp. 9134–9141. Elsevier (2001) https://doi.org/10.1016/B0-08-043152-6/01648-X

  35. Diaz, R.M.; Cardoso-Avila, P.E.; Tavares, J.A.P.; Patakfalvi, R.; Cruz, V.V.; Guevara, H.P.L.; Coronado, O.G.; Garibay, R.I.A.; Arroyo, Q.E.S.; Maranon-Ruiz, V.F.; Contreras, J.C.: Two-step triethylamine-based synthesis of MgO nanoparticles and their antibacterial effect against pathogenic bacteria. Nanomaterials 11(2), 410 (2021). https://doi.org/10.3390/nano11020410

    Article  Google Scholar 

  36. Preethika, M.; Sobana, P.T.: Synthesis and characterisation of magnesium oxide nanoparticles using Ocimum sanctum and its application. World J. Pharm. Res. 7, 285–294 (2018). https://doi.org/10.1016/j.scp.2020.100368

    Article  Google Scholar 

  37. Alswat, A.A., Ahmad, M.B., Saleh, T.A.: Preparation and Characterization of Zeolite\Zinc Oxide-Copper Oxide Nanocomposite: Antibacterial Activities Colloid and Interface Science Communications. 16, 19–24 (2017) doi.org/https://doi.org/10.1016/j.colcom.2016.12.003

  38. Alavi, M.A.; Morsali, A.: Syntheses and characterization of Mg(OH)2 and MgO nanostructures by ultrasonic method. Ultrason. Sonochem. 17(2), 441–446 (2010). https://doi.org/10.1016/j.ultsonch.2009.08.013

    Article  Google Scholar 

  39. Karthikeyan, C.; Sisubalan, N.; Sridevi, M.; Varaprasad, K.; Basha, M.H.G.; Shucai, W.; Sadiku, R.: Biocidal chitosan-magnesium oxide nanoparticles via a green precipitation process. J. Hazardous Mater. 411, 124884 (2021)

    Article  Google Scholar 

  40. Vijayakumar, S.; Punitha, V.N.; Parameswari, N.: Phytonanosynthesis of MgO nanoparticles: green synthesis characterization and antimicrobial evaluation. Arab. J. Sci. Eng. (2021). https://doi.org/10.1007/s13369-021-06107-3

    Article  Google Scholar 

  41. Prado, D.C.; Fernández, I.; Rodríguez-Páez, J.E.: MgO nanostructures: synthesis, characterization and tentative mechanisms of nanoparticles formation. Nano-Struct. Nano-Objects. 23, 100482 (2020). https://doi.org/10.1016/j.nanoso.2020.100482

    Article  Google Scholar 

  42. Arabi, M., Ostovan,A., Bagheri, A.R., Guo, X., Li, J., Ma, J., Chen, L.: Hydrophilic molecularly imprinted nanospheres for the extraction of rhodamine B followed by HPLC analysis: A green approach and hazardous waste elimination. Talanta, 120933 (2020)

  43. Ostovan, A., Ghaedi, M., Arabi, M., Chen, L.: Hydrophilic multitemplate molecularly imprinted biopolymers based on a green synthesis strategy for determination of B-Family vitamins, Source: ACS APPLIED MATERIALS & INTERFACES. 10, 4 : 4140–4150 (2018). DOI: https://doi.org/10.1021/acsami.7b17500

  44. Ibrahim, H., Klarner, A.D., Poorganji, B., Dean, D., Luo, A.A., Elahinia, M.: Microstructural, mechanical and corrosion characteristics of hear-treated Mg-1.2Zn-O.5Ca (wt%) alloy for use as resorbable bone fixation material. J. Mech. Behav. Biomed. Mater. 69, 203–212 (2017). doi: https://doi.org/10.1016/j.jmbbm.2017.01.005

  45. Baby, J.N., Sriram, B., Wang, S., George, M.: Effect of various deep eutectic solvents on the sustainable synthesis of MgFe2O4 nanoparticles for simultaneous electrochemical determination of nitrofurantoin and 4-Nitrophenol. Source: ACS sustainable chemistry & engineering. 8, 3: 1479–1486 (2020). DOI: https://doi.org/10.1021/acssuschemeng.9b05755

  46. Sharmila, G.; Muthukumaran, C.; Sangeetha, E.; Saraswathi, H.; Soundarya, S.; Kumar, N.M.: Green fabrication, characterization of Pisonia alba leaf extract derived MgO nanoparticles and its biological applications. Nano-Struct. Nano-Objects. 20, 100380 (2019). https://doi.org/10.1016/j.nanoso.2019.100380

    Article  Google Scholar 

  47. Jhansi, K., Jayarambabu, N., Reddy, K. P., Reddy, N. M., Suvarna, R. P., Rao, K. V., Kumar, V. R., Rajendar, V.: Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut (Arachis hypogaea L.) seed germination. 3 Biotech. 7: 263–274 (2017). https://doi.org/10.1007/s13205-017-0894-3

  48. Ahmed, T., Noman, M., Manzoor, N., Shahid, M., Hussaini, K.M., Rizwan, M, Ali, S., Maqsood, A., Li, B.: Green magnesium oxide nanoparticles-based modulation of cellular oxidative repair mechanisms to reduce arsenic uptake and translocation in rice (Oryza sativa L.) plants. Environmental pollution. 288, 117785 (2021). DOI: https://doi.org/10.1016/j.envpol.2021.117785

  49. Bagheri, A.R.; Arabi, M.; Ghaedi, M.; Ostovan, A.; Wang, X.; Li, J.; Chen, L.: Dummy molecularly imprinted polymers based on a green synthesis strategy for magnetic solid-phase extraction of acrylamide in food samples. Talanta 195, 390–400 (2019)

    Article  Google Scholar 

  50. Ibrahem, E.J.; Thalij, K.M.; Badawy, A.S.: Antibacterial potential of magnesium oxide nanoparticles synthesized by Aspergillus niger. Biotechnol. J. Int. 18(1), 1–7 (2017). https://doi.org/10.9734/BJI/2017/29534

    Article  Google Scholar 

  51. Osman, M.S.; Ghani, Z.A.; Ismail, N.F.; Razak, N.A.A.; Jaapar, J.; Ariff, M.A.M.: qualitative comparison of active compounds between red and green Mariposa christia vespertilionis leaves extracts. AIP Conf Proc. 1885, 020282–020287 (2017)

    Article  Google Scholar 

  52. Abdallah, Y., Ogunyemi, S.O., Abdelazez, A., Zhang, M., Hong, X., Ibrahim, E., Hossain, A., Fouad, H., Li, B., Chen, J.: The green synthesis of MgO nano-flowers using Rosmarinus officinalis L. (Rosemary) and the antibacterial activities against Xanthomonas oryzae pv. Oryzae. Biomed. Res. Int. (2019). 1–8. doi: https://doi.org/10.1155/2019/5620989

  53. Ghindan, A.Y.; Al-Antary, T.W.; Awwad, A.M.; Akash, M.W.: Aphidicidal potential of green synthesized magnesium hydroxide nanoparticles using Olea europaea leaves extract. ARPN J. Agric. Biol. Sci. 12(10), 293–301 (2017)

    Google Scholar 

  54. Tang, Z.X.; Lv, B.F.: MgO nanoparticles as antibacterial agent: preparation and activity. Braz. J. Chem. Eng. 31(3), 591–601 (2014)

    Article  Google Scholar 

  55. Kadhem, E.A.; Zhgair, M.H.; Mahdi, S.S.; Tizkam, H.H.; Alahmad, S.: Antibacterial activity of magnesium oxide nanoparticles prepared by calcination method. Int. J. Pharm. Qual. Assur. 10(3), 73–76 (2019)

    Google Scholar 

  56. Bindhu, M.R., Umadevi, M., Micheal, M.K., Arasu, M.V., Al-Dhabi, N.A.: Structural, morphological and optical properties of MgO nanoparticles for antibacterial applications. Mater. Lett. 166, 19–22 (2016). doi; https://doi.org/10.1016/j.matlet.2015.12.020

  57. Khan, A.; Shabbier, D.; Ahmad, P.: Biosynthesis and antibacterial activity of MgO-NPs produced from camellia-sinensis leaves extract. Mater. Res. Express. 8(1), 015402 (2020). https://doi.org/10.1088/2053-1591/abd421

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the research fund University Malaysia Terengganu (UMT), Talent and Publication Enhancement Research Grant (TAPE-RG Vot: 55259), Faculty of Science and Marine Environment, and Institute of Marine Biotechnology for the facilities provided throughout this study. The authors would also like to thank the Centre for Functional Materials and Nanotechnology, Institute of Science, Universiti Teknologi MARA, Shah Alam, Malaysia, for their support in completing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanis Mohd Yusoff.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farizan, A.F., Yusoff, H.M., Badar, N. et al. Green Synthesis of Magnesium Oxide Nanoparticles Using Mariposa christia vespertilionis Leaves Extract and Its Antimicrobial Study Toward S. aureus and E. coli. Arab J Sci Eng 48, 7373–7386 (2023). https://doi.org/10.1007/s13369-022-07282-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07282-7

Keywords

Navigation