Skip to main content
Log in

4,4’-(((2,2-Dimethylpropane-1,3-Diyl)Bis(Azanediyl)Bis(Methylene) Bis(2-Methoxyphenol) as New Reduced Form of Schiff Base for Protecting API 5L Grade B in 1 M HCl

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to the high anti-corrosion property, accessibility as natural materials, being eco-friendly and low cost, the use of reduced form of Schiff base (RSH) for corrosion inhibition of steel remains an important challenge. The RSH mentioned here as a green corrosion inhibitor for steel in 1 M HCl was investigated using weight loss, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization (PDP) methods. When the RSH is added to the 1 M HCl solution, the increased inhibition efficiency and less corrosion attack were observed. The inhibition efficiency was found to increase with increasing inhibitor’s concentration. Polarization data indicated that these compounds act as mixed-type inhibitors. The corrosion efficiency of RSH at an optimal concentration of 2 mg/L was 75. Also, the obtained results from the PDP method indicate that RSH is a mixed-type inhibitor and the adsorption of RSH on the steel surface obeys Langmuir adsorption isotherm. AFM techniques confirmed the presence of the protective film on the steel surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Jafari, H.; Akbarzade, K.; Danaee, I.: Corrosion inhibition of carbon steel immersed in a 1 M HCl solution using benzothiazole derivatives. Arab. J. Chem. 12, 1387–94 (2019)

    Article  Google Scholar 

  2. Jafari, H.; Sayin, K.: Corrosion inhibition studies of N, N′-bis (4-formylphenol)-1, 2-Diaminocyclohexane on steel in 1 HCl solution acid. J. Taiwan Inst. Chem. Eng. 1(64), 314–324 (2016)

    Article  Google Scholar 

  3. Jafari, H.; Sayin, K.: Electrochemical and theoretical studies of adsorption and corrosion inhibition of aniline violet compound on carbon steel in acidic solution. J. Taiwan Inst. Chem. Eng. 1(56), 181–190 (2015)

    Article  Google Scholar 

  4. Jafari, H.; Danaee, I.; Eskandari, H.; RashvandAvei, M.: Combined computational and experimental study on the adsorption and inhibition effects of N2O2 Schiff base on the corrosion of API 5L grade B steel in 1 mol/L HCl. J. Mater. Sci. Technol. 30, 239–252 (2014)

    Article  Google Scholar 

  5. Jafari, H.; Danaee, I.; Eskandari, H.; RashvandAvei, M.: Electrochemical and theoretical studies of adsorption and corrosion inhibition of N, N′-Bis(2-hydroxyethoxyacetophenone)-2,2-dimethyl-1,2-propanediimine on Low Carbon Steel (API 5L Grade B) in acidic solution. Ind. Eng. Chem. Res. 52, 6617–6632 (2013)

    Article  Google Scholar 

  6. Zhang, X.; Li, W.; Yu, G.; Zuo, X.; Luo, W.; Zhang, J.; Zhang, S.: Evaluation of Idesia polycarpa Maxim fruits extract as a natural green corrosion inhibitor for copper in 0 5 M sulfuric acid solution. J. Molecular Liquids 318, 114080 (2020)

    Article  Google Scholar 

  7. Zhang, X.; Li, W.; Zuo, X.; Tan, B.; Xu, C.; Zhang, S.: Investigating the inhibitive effect of Davidia involucrata leaf extract as a biological eco-friendly inhibitor for copper in acidic medium. J. Mol. Liq. 325, 115214 (2021)

    Article  Google Scholar 

  8. Zuo, X.; Li, W.; Luo, W.; Zhang, X.; Qiang, Y.; Zhang, J.; Tan, B.: Research of Lilium brownii leaves extract as a commendable and green inhibitor for X70 steel corrosion in hydrochloric acid. J. Mol. Liq. 321, 114914 (2021)

    Article  Google Scholar 

  9. Xu, C.; Li, W.; Tan, B.; Zuo, X.; Zhang, S.: Adsorption of Gardenia jasminoides fruits extract on the interface of Cu/H2SO4 to inhibit Cu corrosion: Experimental and theoretical studies. J. Mol. Liq. 345, 116996 (2022)

    Article  Google Scholar 

  10. Tan, B.; Lan, W.; Zhang, S.; Deng, H.; Qiang, Y.; Fu, A.; Li, W.: Passiflora edulia Sims leaves extract as renewable and degradable inhibitor for copper in sulfuric acid solution. Colloids Surf., A 645, 128892 (2022)

    Article  Google Scholar 

  11. Tan, B.; Zhang, S.; Cao, X.; Fu, A.; Guo, L.; Marzouki, R.; Li, W.: Insight into the anti-corrosion performance of two food flavors as eco-friendly and ultra-high performance inhibitors for copper in sulfuric acid medium. J. Colloid Interface Sci. 609, 838–851 (2022)

    Article  Google Scholar 

  12. Zhang, X.; Yang, L.; Zhang, Y.; Tan, B.; Zheng, X.; Li, W.: Combined electrochemical/surface and theoretical assessments of Rosa laevigata extract as an eco-friendly corrosion inhibitor for copper in acidic medium. J. Taiwan Inst. Chem. Eng. 136, 104408 (2022)

    Article  Google Scholar 

  13. Rezaeivala, M.; Karimi, S.; Sayin, K.; Tüzün, B.: Experimental and theoretical investigation of corrosion inhibition effect of two piperazine-based ligands on carbon steel in acidic media. Colloids Surf., A 641, 128538 (2022)

    Article  Google Scholar 

  14. Jafari, H.; Ameri, E.; Rezaeivala, M.: Investigation of adsorption of new Schiff base on steel surface in sulfuric acid medium. Farayandno 16(74), 16–26 (2021)

    Google Scholar 

  15. Lou, Y.; Chang, W.; Cui, T.; Wang, J.; Qian, H.; Ma, L.; Hao, X.; Zhang, D.: Microbiologically influenced corrosion inhibition mechanisms in corrosion protection: a review. Bioelectrochemistry 141, 107883 (2021)

    Article  Google Scholar 

  16. Barmatov, E.; Hughes, T.: Degradation of a schiff-base corrosion inhibitor by hydrolysis, and its effects on the inhibition efficiency for steel in hydrochloric acid. Mater. Chem. Phys. 257, 123758 (2021)

    Article  Google Scholar 

  17. Zhang, Y.; Pan, Y.; Li, P.; Zeng, X.; Guo, B.; Pan, J.; Hou, L.; Yin, X.: Novel Schiff base-based cationic Gemini surfactants as corrosion inhibitors for Q235 carbon steel and printed circuit boards. Colloids Surf., A 623, 126717 (2021)

    Article  Google Scholar 

  18. Satpati, S.; Suhasaria, A.; Ghosal, S.; Saha, A.; Dey, S.; Sukul, D.: Amino acid and cinnamaldehyde conjugated Schiff bases as proficient corrosion inhibitors for mild steel in 1 M HCl at higher temperature and prolonged exposure: Detailed electrochemical, adsorption and theoretical study. J. Mol. Liq. 324, 115077 (2021)

    Article  Google Scholar 

  19. Jafari, H.; Ameri, E.; Rezaeivala, M.; Berisha, A.; Halili, J.: Anti-corrosion behavior of two N2O4 Schiff-base ligands: experimental and theoretical studies. J. Phys. Chem. Solids 164, 110645 (2022)

    Article  Google Scholar 

  20. Karimi, S., Rezaeivala, M., Sayin, K. and Tuzun, B.: Experimental and computational investigation of 3, 5-di-tert-butyl-2-(((3-((2-morpholinoethyl)(pyridin-2-ylmethyl) amino) propyl) imino) methyl) phenol and related reduced form as an inhibitor for C-steel. Mater. Chem. Physics, p.126152. (2022)

  21. Rezaeivala, M.; Karimi, S.; Tuzun, B.; Sayin, K.: Anti-corrosion behavior of 2-((3-(2-morpholino ethylamino)-N3-((pyridine-2-yl) methyl) propylimino) methyl) pyridine and its reduced form on Carbon Steel in Hydrochloric Acid solution: Experimental and theoretical studies. Thin Solid Films 741, 139036 (2022)

    Article  Google Scholar 

  22. Ameri, E.; Jafari, H.; Rezaeevala, M.; Vakili, M.H.; Mokhtarian, N.: Synthesized schiff base acted as eco-friendly inhibitor for mild steel in 1N H2SO4. Chem. Rev. Lett. 5(2), 119–126 (2022)

    Article  Google Scholar 

  23. Sayin, K.; Jafari, H.: Effect of pyridyl on adsorption behavior and corrosion inhibition of aminotriazole. J. Taiwan Inst. Chem. Eng. 1(68), 431–439 (2016)

    Article  Google Scholar 

  24. Jafari, H.; Danaee, I.; Eskandari, H.: Inhibitive action of novel Schiff base towards corrosion of API 5L carbon steel in 1 M hydrochloric acid solutions. Trans Indian Inst Met 68, 729–739 (2015)

    Article  Google Scholar 

  25. Mohsenifar, F.; Jafari, H.; Sayin, K.: Investigation of thermodynamic parameters for steel corrosion in acidic solution in the presence of N, N′-Bis (phloroacetophenone)-1, 2 propanediamine. J. Bio-and Tribo-Corrosion. 2(1), 1–3 (2016)

    Article  Google Scholar 

  26. Haldhar, R.; Prasad, D.; Nguyen, L.T.; Kaya, S.; Bahadur, I.; Dagdag, O.; Kim, S.C.: Corrosion inhibition, surface adsorption and computational studies of Swertia chirata extract: a sustainable and green approach. Mater. Chem. Phys. 267, 124613 (2021)

    Article  Google Scholar 

  27. He, J.; Xu, Q.; Li, G.; Li, Q.; Marzouki, R.; Li, W.: Insight into the corrosion inhibition property of Artocarpus heterophyllus Lam leaves extract. J. Ind. Eng. Chem. 102, 260–270 (2021)

    Article  Google Scholar 

  28. Jafari, H.; Ameri, E.; Rezaeivala, M.; Berisha, A.: Experimental and theoretical studies on protecting steel against 0.5 M H2SO4 corrosion by new schiff base. J. Ind. Chem. Soc. 99(9), 100665 (2022)

    Article  Google Scholar 

  29. Umoren, S.A., Suleiman, R.K., Obot, I.B., Solomon, M.M. and Adesina, A.Y.: Elucidation of corrosion inhibition property of compounds isolated from Butanolic Date Palm Leaves extract for low carbon steel in 15% HCl solution: Experimental and theoretical approaches. Journal of Molecular Liquids, p.119002. (2022)

  30. Shahmoradi, A.R.; Talebibahmanbigloo, N.; Nickhil, C.; Nisha, R.; Javidparvar, A.A.; Ghahremani, P.; Bahlakeh, G.; Ramezanzadeh, B.: Molecular-MD/atomic-DFT theoretical and experimental studies on the quince seed extract corrosion inhibition performance on the acidic-solution attack of mild-steel. J. Mol. Liq. 346, 117921 (2022)

    Article  Google Scholar 

  31. Rotaru, I.; Varvara, S.; Gaina, L.; Muresan, L.M.: Antibacterial drugs as corrosion inhibitors for bronze surfaces in acidic solutions, Appli. Surf. Sci. 321, 188–196 (2014)

    Article  Google Scholar 

  32. Saraswat, V.; Kumari, R.; Yadav, M.: Novel carbon dots as efficient green corrosion inhibitor for mild steel in HCl solution: Electrochemical, gravimetric and XPS studies. J. Phys. Chem. Solids 160(2022), 110341 (2022)

    Article  Google Scholar 

  33. Rezaeivala, M.; Keypour, H.: Schiff base and non-Schiff base macrocyclic ligands and complexes incorporating the pyridine moiety - The first 50 years. Coord. Chem. Rev. 280, 203–253 (2014)

    Article  Google Scholar 

  34. Rezaeivala, M.; Ahmadi, M.; Captain, B.; Şahin-Bölükbaşı, S.; Dehghani-Firouzabadi, A.A.; William Gable, R.: Synthesis, characterization, and cytotoxic activity studies of new N4O complexes derived from 2-({3-[2-morpholinoethylamino]-N3-([pyridine-2-yl]methyl) propylimino} methyl)phenol. Appl. Organomet. Chem. 34, e5325 (2020)

    Article  Google Scholar 

  35. Rezaeivala, M.; Ahmadi, M.; Captain, B.; Bayat, M.; Saeidirad, M.; Şahin-Bölükbaşı, S.; Yıldız, B.; Gable, R.W.: Some new morpholine-based Schiff-base complexes; Synthesis, characterization, anticancer activities and theoretical studies. Inorganica Chim. Acta. 513, 119935 (2020)

    Article  Google Scholar 

  36. Rezaeivala, M.; Zebarjadian, M.H.; Sayin, K.: Synthesis and competitive 7Li NMR studies of two morpholine-based ligands. J. Mol. Struct. 1242, 130703 (2021)

    Article  Google Scholar 

  37. Rezaeivala, M.: Synthesis, characterization and theoretical studies of a new Macroacyclic SchiffBase ligand containing Piperazine moiety and related Mn(II), Cu(II), Ni(II) and Cd(II) complexes. Inorg. Chem. Res. 1(2), 85–92 (2017)

    Google Scholar 

  38. Golbedaghi, R.; Rezaeivala, M.; Albeheshti, L.: Cd(II) and Zn(II) complexes of two new hexadentate Schiff base ligands derived from different aldehydes and ethanol amine; X-ray crystal structure, IR and NMR spectroscopy studies. J. Mol. Struct. 1076, 673–678 (2014)

    Article  Google Scholar 

  39. Zhu, M.; He, Z.; Guo, L.; Zhang, R.; Anadebe, V.C.; Obot, I.B.; Zheng, X.: Corrosion inhibition of eco-friendly nitrogen-doped carbon dots for carbon steel in acidic media: performance and mechanism investigation. J. Mol. Liq. 342, 117583 (2021)

    Article  Google Scholar 

  40. Atkinson, I.M.; Byriel, K.A.; Chia, P.S.K.; Kennard, C.H.L.; Leong, A.J.; Lindoy, L.F.; Lowe, M.P.; Mahendran, S.; Smith, G.; Wei, G.: Macrocyclic ligand design. structure—function relationships underlying the interaction of substituted derivatives of oxygen-nitrogen macrocycles with selected transition and post transition metal ions. Aust. J. Chem. 51, 985 (1998)

    Article  Google Scholar 

  41. Jafari, H.; Rezaeivala, M.; Mokhtarian, N.; Berisha, A.; Ameri, E.: Corrosion inhibition of carbon steel in 0.5 M H2SO4 by new reduced Schiff base ligand. J. Bio- Tribo-Corrosion 83, 1–13 (2022). https://doi.org/10.1007/S40735-022-00679-9

    Article  Google Scholar 

  42. Jafari, H.; Ameri, E.; Rezaeivala, M.; Berisha, A.; Halili, J.: Anti-corrosion behavior of two N2O4 Schiff-base ligands: experimental and theoretical studies. J. Phys. Chem. Solids. 164, 110645 (2022). https://doi.org/10.1016/J.JPCS.2022.110645

    Article  Google Scholar 

  43. Berisha, A.: Interactions between the aryldiazonium cations and graphene oxide: a DFT study. J. Chem. (2019). https://doi.org/10.1155/2019/5126071

    Article  Google Scholar 

  44. Molhi, A.; Hsissou, R.; Damej, M.; Berisha, A.; Bamaarouf, M.; Seydou, M.; Benmessaoud, M.; El Hajjaji, S.: Performance of two epoxy compounds against corrosion of C38 steel in 1 M HCl: Electrochemical, thermodynamic and theoretical assessment. Int. J. Corros. Scale Inhib. 10, 812–837 (2021). https://doi.org/10.17675/2305-6894-2021-10-2-21

    Article  Google Scholar 

  45. Berisha, A.: The influence of the grafted aryl groups on the solvation properties of the graphyne and graphdiyne- A MD study. Open Chem. 17, 703–710 (2019). https://doi.org/10.1515/chem-2019-0083

    Article  Google Scholar 

  46. Rahimi, A.; Farhadian, A.; Berisha, A.; Shaabani, A.; Varfolomeev, M.A.; Mehmeti, V.; Zhong, X.; Yousefzadeh, S.; Djimasbe, R.: Novel sucrose derivative as a thermally stable inhibitor for mild steel corrosion in 15% HCl medium: an experimental and computational study. Chem. Eng. J. (2022). https://doi.org/10.1016/J.CEJ.2022.136938

    Article  Google Scholar 

  47. Jafari, H.; Ameri, E.; Soltanolkottabi, F.; Berisha, A.; Seydou, M.: Experimental and theoretical investigations of new Schiff base compound adsorption on aluminium in 1 M HCl. J. Electrochem. Sci. Eng. (2022). https://doi.org/10.5599/jese.1405

    Article  Google Scholar 

  48. Damej, M., Hsissou, R., Berisha, A., Azgaou, K., Sadiku, M., Benmessaoud, M., Labjar, N., El hajjaji, S.: New epoxy resin as a corrosion inhibitor for the protection of carbon steel C38 in 1M HCl. experimental and theoretical studies DFT, MC, and MD. J. Mol. Struct. (2022) https://doi.org/10.1016/J.MOLSTRUC.2022.132425

  49. Ould Abdelwedoud, B.; Damej, M.; Tassaoui, K.; Berisha, A.; Tachallait, H.; Bougrin, K.; Mehmeti, V.; Benmessaoud, M.: Inhibition effect of N-propargyl saccharin as corrosion inhibitor of C38 steel in 1 M HCl, experimental and theoretical study. J. Mol. Liq. 354, 118784 (2022). https://doi.org/10.1016/J.MOLLIQ.2022.118784

    Article  Google Scholar 

  50. Mehmeti, V.: Nystatin drug as an effective corrosion inhibitor for mild steel in acidic media– an experimental and theoretical study. Corros. Sci. Technol. 21, 21–31 (2022). https://doi.org/10.14773/CST.2022.21.1.21

    Article  Google Scholar 

  51. Ganjoo, R.; Sharma, S.; Thakur, A.; Assad, H.; Kumar Sharma, P.; Dagdag, O.; Berisha, A.; Seydou, M.; Ebenso, E.E.; Kumar, A.: Experimental and Theoretical study of sodium cocoyl glycinate as corrosion inhibitor for mild steel in hydrochloric acid medium. J. Mol Liq (2022). https://doi.org/10.1016/J.MOLLIQ.2022.119988

    Article  Google Scholar 

  52. Daoudi, W.; El Aatiaoui, A.; Falil, N.; Azzouzi, M.; Berisha, A.; Olasunkanmi, L.O.; Dagdag, O.; Ebenso, E.E.; Koudad, M.; Aouinti, A.; Loutou, M.; Oussaid, A.: Essential oil of Dysphania ambrosioides as a green corrosion inhibitor for mild steel in HCl solution. J. Mol. Liq. 363, 119839 (2022). https://doi.org/10.1016/J.MOLLIQ.2022.119839C

    Article  Google Scholar 

  53. Bhardwaj, N.; Sharma, P.; Berisha, A.; Mehmeti, V.; Dagdag, O.; Kumar, V.: Monte Carlo simulation, molecular dynamic simulation, quantum chemical calculation and anti-corrosive behaviour of Citrus limetta pulp waste extract for stainless steel (SS-410) in acidic medium. Mater. Chem. Phys. 284, 126052 (2022). https://doi.org/10.1016/J.MATCHEMPHYS.2022.126052

    Article  Google Scholar 

  54. Jafari, H.; Ameri, E.; Rezaeivala, M.; Berisha, A.; Vakili, M.H.: Comparison the anticorrosion behavior of three symmetrical Schiff-base ligands: experimental and theoretical studies. J. Appl. Electrochem. 1–16 (2022)

  55. Ould abdelwedoud, B, Damej, M., Tassaoui, K., Berisha, Tachallait, H., Bougrin, K., Mehmeti, V., Benmessaoud, M.: Inhibition effect of N-propargyl saccharin as corrosion inhibitor of C38 steel in 1M HCl, experimental and theoretical study, J. Mol. Liq. https://doi.org/10.1016/J.MOLLIQ.2022.118784. (2022)

  56. Ouass, A.; Galai, M.; Ouakki, M.; Ech-Chihbi, E.; Kadiri, L.; Hsissou, R.; Essaadaoui, Y.; Berisha, A.; Cherkaoui, M.; Lebkiri, A.; Rifi, E.H.: Poly(sodium acrylate) and Poly(acrylic acid sodium) as an eco-friendly corrosion inhibitor of mild steel in normal hydrochloric acid: experimental, spectroscopic and theoretical approach. J Appl Electrochem (2021). https://doi.org/10.1007/S10800-021-01556-Y

    Article  Google Scholar 

  57. Dagdag, O.; Berisha, A.; Mehmeti, V.; Haldhar, R.; Berdimurodov, E.; Hamed, O.; Jodeh, S.; Lgaz, H.; Sherif, E.-S.M.; Ebenso, E.E.: Epoxy coating as effective anti-corrosive polymeric material for aluminum alloys: Formulation, electrochemical and computational approaches. J. Liq. Mol. (2021). https://doi.org/10.1016/J.MOLLIQ.2021.117886

    Article  Google Scholar 

  58. El Faydy, M.; About, H.; Warad, I.; Kerroum, Y.; Berisha, A.; Podvorica, F.; Bentiss, F.; Kaichouh, G.; Lakhrissi, B.; Zarrouk, A.: Insight into the corrosion inhibition of new bis-quinolin-8-ols derivatives as highly efficient inhibitors for C35E steel in 0 5 M H2SO4. J. Mol. Liq. 342, 117333 (2021). https://doi.org/10.1016/J.MOLLIQ.2021.117333

    Article  Google Scholar 

  59. Berisha, A.: Ab inito exploration of nanocars as potential corrosion inhibitors. Comput. Theor. Chem. 1201, 113258 (2021). https://doi.org/10.1016/J.COMPTC.2021.113258

    Article  Google Scholar 

  60. El Kalai, F.; Chelfi, T.; Benchat, N.; Hacht, B.; Bouklah, M.; Elaatiaoui, A.; Daoui, S.; Allali, M.; Ben Hadda, T.; Almalki, F.: New organic extractant based on pyridazinone scaffold compounds: Liquid-liquid extraction study and DFT calculations. J. Mol. Struct. 1191, 24–31 (2019). https://doi.org/10.1016/j.molstruc.2019.04.033

    Article  Google Scholar 

  61. Molhi, A.; Hsissou, R.; Damej, M.; Berisha, A.; Thaçi, V.; Belafhaili, A.; Benmessaoud, M.; Labjar, N.; El Hajjaji, S.: Contribution to the corrosion inhibition of c38 steel in 1 m hydrochloric acid medium by a new epoxy resin pgeppp. Int. J. Corros. Scale Inhib. 10, 399–418 (2021). https://doi.org/10.17675/2305-6894-2021-10-1-23

    Article  Google Scholar 

  62. Dagdag, O.; El Harfi, A.; El Gana, L.; Safi, Z.S.; Guo, L.; Berisha, A.; Verma, C.; Ebenso, E.E.; Wazzan, N.; El Gouri, M.: Designing of phosphorous based highly functional dendrimeric macromolecular resin as an effective coating material for carbon steel in NaCl: Computational and experimental studies. J. Appl. Polym. Sci. 138, 49673 (2021). https://doi.org/10.1002/APP.49673

    Article  Google Scholar 

  63. Haldhar, R.; Prasad, D.; Bahadur, I.; Dagdag, O.; Berisha, A.: Evaluation of Gloriosa superba seeds extract as corrosion inhibition for low carbon steel in sulfuric acidic medium: a combined experimental and computational studies. J. Mol. Liq. 323, 114958 (2021). https://doi.org/10.1016/J.MOLLIQ.2020.114958

    Article  Google Scholar 

  64. Dagdag, O.; Hsissou, R.; El Harfi, A.; Berisha, A.; Safi, Z.; Verma, C.; Ebenso, E.E.E.; Ebn Touhami, M.; El Gouri, M.: Fabrication of polymer based epoxy resin as effective anti-corrosive coating for steel: computational modeling reinforced experimental studies. Surfaces and Interfaces. 18, 100454 (2020). https://doi.org/10.1016/j.surfin.2020.100454

    Article  Google Scholar 

  65. Dagdag, O.; Hsissou, R.; Berisha, A.; Erramli, H.; Hamed, O.; Jodeh, S.; El Harfi, A.: Polymeric-based epoxy cured with a polyaminoamide as an anticorrosive coating for aluminum 2024–T3 surface: experimental studies supported by computational modeling. J. Bio- Tribo-Corrosion. (2019). https://doi.org/10.1007/s40735-019-0251-7

    Article  Google Scholar 

  66. Abbout, S.; Zouarhi, M.; Chebabe, D.; Damej, M.; Berisha, A.; Hajjaji, N.: Galactomannan as a new bio-sourced corrosion inhibitor for iron in acidic media. Heliyon. 6, e03574 (2020). https://doi.org/10.1016/j.heliyon.2020.e03574

    Article  Google Scholar 

  67. Hsissou, R.; Dagdag, O.; Abbout, S.; Benhiba, F.; Berradi, M.; El Bouchti, M.; Berisha, A.; Hajjaji, N.; Elharfi, A.: Novel derivative epoxy resin TGETET as a corrosion inhibition of E24 carbon steel in 1.0 M HCl solution. Experimental and computational (DFT and MD simulations) methods. J. Mol. Liq. 284, 182–192 (2019). https://doi.org/10.1016/j.molliq.2019.03.180

    Article  Google Scholar 

  68. Guo, L.; Zhang, S.T.; Li, W.P.; Hu, G.; Li, X.: Experimental and computational studies of two antibacterial drugs as corrosion inhibitors for mild steel in acid media. Mater. Corros. 65, 935–942 (2014). https://doi.org/10.1002/maco.201307346

    Article  Google Scholar 

  69. Hsissou, R., Benzidia, B., Rehioui, M., Berradi, M., Berisha, A., Assouag, M., Hajjaji, N., Elharfi, A.: Anticorrosive property of hexafunctional epoxy polymer HGTMDAE for E24 carbon steel corrosion in 1 0 M HCl: gravimetric, electrochemical, surface morphology and molecular dynamic simulations, Polym. Bull. 77, 3577–3601

  70. Ouass, A.; Galai, M.; Ouakki, M.; Ech-Chihbi, E.; Kadiri, L.; Hsissou, R.; Essaadaoui, Y.; Berisha, A.; Cherkaoui, M.; Lebkiri, A.; Rifi, E.H.: Poly(sodium acrylate) and Poly(acrylic acid sodium) as an eco-friendly corrosion inhibitor of mild steel in normal hydrochloric acid: experimental, spectroscopic and theoretical approach. J. Appl. Electrochem. 51, 1009–1032 (2021). https://doi.org/10.1007/s10800-021-01556-y

    Article  Google Scholar 

  71. Jessima, S.J.H.M.H.M.; Berisha, A.; Srikandan, S.S.S.S.; Subhashini, S.: Preparation, characterization, and evaluation of corrosion inhibition efficiency of sodium lauryl sulfate modified chitosan for mild steel in the acid pickling process. J. Mol. Liq. 320, 114382 (2020). https://doi.org/10.1016/j.molliq.2020.114382

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hojat Jafari or Elham Ameri.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari, H., Ameri, E., Rezaeivala, M. et al. 4,4’-(((2,2-Dimethylpropane-1,3-Diyl)Bis(Azanediyl)Bis(Methylene) Bis(2-Methoxyphenol) as New Reduced Form of Schiff Base for Protecting API 5L Grade B in 1 M HCl. Arab J Sci Eng 48, 7359–7372 (2023). https://doi.org/10.1007/s13369-022-07281-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07281-8

Keywords

Navigation