Skip to main content
Log in

Preparation and Study of XCeO3 (X: Mg, Ca, Sr, Ba) Perovskite-type oxide supported Cobalt Catalyst for Hydrogen Production by Ammonia Decomposition

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The cobalt catalysts supported on perovskite-type XCeO3 (X: Mg, Ca, Sr, Ba) oxide were prepared for the decomposition of ammonia. The influence of different alkaline earth metals in support composition on the catalytic activity of Co/XCeO3 catalysts has been studied. A nominal 5 wt% Co loading was maintained over these perovskite supports. The catalytic ammonia decomposition performance was studied in the temperature range 300–600 °C. The catalyst 5Co–BaCeO (5 wt% Co impregnated on BaCeO3 support) showed the highest activity among the all other catalysts and the sequential order of exhibited NH3 conversion was as follows: 5Co–MgCeO < 5Co–CaCeO ≤ 5Co–SrCeO < 5Co–BaCeO. The synthesized catalysts were characterized by BET, XRD, TPR, CO2-TPD and SEM techniques. The results showed that the interaction between BaCeO3 and Co is beneficial to electron conductivity that promotes the catalytic activity of 5Co–BaCeO. The basicity of 5Co–BaCeO catalysts facilitates the re-combinative desorption of surface N atoms which help in enriching the ammonia decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Xue, M.; Wang, Q.; Lin, B.-L.; Tsunemi, K.: Assessment of ammonia as an energy carrier from the perspective of carbon and nitrogen footprints. ACS Sustain. Chem. Eng. 7, 12494–12500 (2019). https://doi.org/10.1021/acssuschemeng.9b02169

    Article  Google Scholar 

  2. Podila, S.; Driss, H.; Zaman, S.F.; Al-Zahrani, A.A.; Daous, M.A.; Petrov, L.A.: Development of high surface area bulk W2N catalysts for hydrogen production from ammonia decomposition. Int. J. Hydrogen Energy 45, 16219–16226 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.067

    Article  Google Scholar 

  3. Podila, S.; Driss, H.; Zaman, S.F.; Ali, A.M.; Al-Zahrani, A.A.; Daous, M.A.; Petrov, L.A.: MgFe and Mg–Co–Fe mixed oxides derived from hydrotalcites: highly efficient catalysts for COx free hydrogen production from NH3. Int. J. Hydrogen Energy 45, 873–890 (2020). https://doi.org/10.1016/j.ijhydene.2019.10.107

    Article  Google Scholar 

  4. Zaman, S.F.; Jolaoso, L.A.; Podila, S.; Al-Zahrani, A.A.; Alhamed, Y.A.; Driss, H.; Daous, M.M.; Petrov, L.: Ammonia decomposition over citric acid chelated γ-Mo2N and Ni2Mo3N catalysts. Int. J. Hydrogen Energy 43, 17252–17258 (2018). https://doi.org/10.1016/j.ijhydene.2018.07.085

    Article  Google Scholar 

  5. Borisov, V.A.; Iost, K.N.; Temerev, V.L.; Simunin, M.M.; Leont’eva, N.N.; Mikhlin, Y.L.; Volochaev, M.N.; Shlyapin, D.A.: Ammonia decomposition Ru catalysts supported on alumina nanofibers for hydrogen generation. Mater. Lett. 306, 130842 (2022). https://doi.org/10.1016/j.matlet.2021.130842

    Article  Google Scholar 

  6. Pinzón, M.; Sánchez-Sánchez, A.; Sánchez, P.; de la Osa, A.; Romero, A.: Ammonia as a carrier for hydrogen production by using lanthanum based perovskites. Energy Convers. Manag. 246, 114681 (2021). https://doi.org/10.1016/j.enconman.2021.114681

    Article  Google Scholar 

  7. Tang, H.; Wang, Y.; Zhang, W.; Liu, Z.; Li, L.; Han, W.; Li, Y.: Catalytic activity of Ru supported on SmCeOx for ammonia decomposition: the effect of Sm doping. J. Solid State Chem. 295, 121946 (2021). https://doi.org/10.1016/j.jssc.2020.121946

    Article  Google Scholar 

  8. Cha, J.; Lee, T.; Lee, Y.-J.; Jeong, H.; Jo, Y.S.; Kim, Y.; Nam, S.W.; Han, J.; Lee, K.B.; Yoon, C.W.; Sohn, H.: Highly monodisperse sub-nanometer and nanometer Ru particles confined in alkali-exchanged zeolite Y for ammonia decomposition. Appl. Catal. B 283, 119627 (2021). https://doi.org/10.1016/j.apcatb.2020.119627

    Article  Google Scholar 

  9. Podila, S.; Alhamed, Y.A.; AlZahrani, A.A.; Petrov, L.A.: Hydrogen production by ammonia decomposition using Co catalyst supported on Mg mixed oxide systems. Int. J. Hydrogen Energy 40, 15411–15422 (2015). https://doi.org/10.1016/j.ijhydene.2015.09.057

    Article  Google Scholar 

  10. Podila, S.; Driss, H.; Zaman, S.F.; Alhamed, Y.A.; AlZahrani, A.A.; Daous, M.A.; Petrov, L.A.: Hydrogen generation by ammonia decomposition using Co/MgO–La2O3 catalyst: influence of support calcination atmosphere. J Mol Catal A: Chem. 414, 130–139 (2016). https://doi.org/10.1016/j.molcata.2016.01.012

    Article  Google Scholar 

  11. Podila, S.; Driss, H.; Zaman, S.F.; Ali, A.M.; Al-Zahrani, A.A.; Daous, M.A.; Petrov, L.A.: Effect of preparation methods on the catalyst performance of Co/MgLa mixed oxide catalyst for COx-free hydrogen production by ammonia decomposition. Int. J. Hydrogen Energy 42, 24213–24221 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.112

    Article  Google Scholar 

  12. Huang, C.; Yu, Y.; Tang, X.; Liu, Z.; Zhang, J.; Ye, C.; Ye, Y.; Zhang, R.: Hydrogen generation by ammonia decomposition over Co/CeO2 catalyst: influence of support morphologies. Appl. Surf. Sci. 532, 147335 (2020). https://doi.org/10.1016/j.apsusc.2020.147335

    Article  Google Scholar 

  13. Bell, T.E.; Menard, H.; Gonzalez Carballo, J.M.; Tooze, R.; Torrente-Murciano, L.: Hydrogen production from ammonia decomposition using Co/γ-Al2O3 catalysts—insights into the effect of synthetic method. Int. J. Hydrogen Energy 45, 27210–27220 (2020). https://doi.org/10.1016/j.ijhydene.2020.07.090

    Article  Google Scholar 

  14. Su, Q.; Wang, H.; Gu, L.; Ji, W.; Au, C.-T.: Fe-based catalyst derived from MgFe-LDH: very efficient yet simply obtainable for hydrogen production via ammonia decomposition. Int. J. Hydrogen Energy 46, 31122–31132 (2021). https://doi.org/10.1016/j.ijhydene.2021.07.020

    Article  Google Scholar 

  15. Gu, Y.; Chen, X.; Zhao, S.; Zhang, Y.: FeCe nanocomposite with high iron content as efficient catalyst for generation of COx-free hydrogen via ammonia decomposition. J. Rare Earths (2020). https://doi.org/10.1016/j.jre.2020.02.009

    Article  Google Scholar 

  16. Sima, D.; Wu, H.; Tian, K.; Xie, S.; Foo, J.J.; Li, S.; Wang, D.; Ye, Y.; Zheng, Z.; Liu, Y.-Q.: Enhanced low temperature catalytic activity of Ni/Al–Ce0.8Zr0.2O2 for hydrogen production from ammonia decomposition. Int. J. Hydrogen Energy. 45, 9342–9352 (2020)

    Article  Google Scholar 

  17. Lee, Y.-J.; Lee, Y.-S.; Cha, J.Y.; Jo, Y.S.; Jeong, H.; Sohn, H.; Yoon, C.W.; Kim, Y.; Kim, K.-B.; Nam, S.W.: Development of porous nickel catalysts by low-temperature Ni–Al chemical alloying and post selective Al leaching, and their application for ammonia decomposition. Int. J. Hydrogen Energy 45, 19181–19191 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.025

    Article  Google Scholar 

  18. Hu, Z.-P.; Weng, C.-C.; Chen, C.; Yuan, Z.-Y.: Catalytic decomposition of ammonia to COx-free hydrogen over Ni/ZSM-5 catalysts: a comparative study of the preparation methods. Appl. Catal. A 562, 49–57 (2018). https://doi.org/10.1016/j.apcata.2018.05.038

    Article  Google Scholar 

  19. Leewis, C.M.; Kessels, W.M.M.; Sanden, M.C.M.; Niemantsverdriet, J.W.: Ammonia adsorption and decomposition on silica supported Rh nanoparticles observed by in situ attenuated total reflection infrared spectroscopy. Appl Surf Sci. 253, 572–580 (2006). https://doi.org/10.1016/j.apsusc.2005.12.115

    Article  Google Scholar 

  20. Gu, Y.; Ma, Y.; Long, Z.; Zhao, S.; Wang, Y.; Zhang, W.: One-pot synthesis of supported Ni@Al2O3 catalysts with uniform small-sized Ni for hydrogen generation via ammonia decomposition. Int J Hydrogen Energy. 46, 4045–4054 (2021). https://doi.org/10.1016/j.ijhydene.2020.11.003

    Article  Google Scholar 

  21. Wang, F.; Deng, L.-D.; Wu, Z.-W.; Ji, K.; Chen, Q.; Jiang, X.-M.: The dispersed SiO2 microspheres supported Ru catalyst with enhanced activity for ammonia decomposition. Int. J. Hydrogen Energy 1, 21 (2021). https://doi.org/10.1016/j.ijhydene.2021.03.205

    Article  Google Scholar 

  22. Wang, Z.; Qu, Y.; Shen, X.; Cai, Z.: Ruthenium catalyst supported on Ba modified ZrO2 for ammonia decomposition to COx-free hydrogen. Int. J. Hydrogen Energy. 44, 7300–7307 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.235

    Article  Google Scholar 

  23. Hu, X.-C.; Wang, W.-W.; Jin, Z.; Wang, X.; Si, R.; Jia, C.-J.: Transition metal nanoparticles supported La-promoted MgO as catalysts for hydrogen production via catalytic decomposition of ammonia. J. Energy Chem. 38, 41–49 (2019). https://doi.org/10.1016/j.jechem.2018.12.024

    Article  Google Scholar 

  24. Ju, X.; Liu, L.; Yu, P.; Guo, J.; Zhang, X.; He, T.; Wu, G.; Chen, P.: Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing COx-free hydrogen from ammonia decomposition. Appl. Catal. B 211, 167–175 (2017). https://doi.org/10.1016/j.apcatb.2017.04.043

    Article  Google Scholar 

  25. Zhang, H.; Alhamed, Y.A.; Kojima, Y.; Al-Zahrani, A.A.; Miyaoka, H.; Petrov, L.A.: Structure and catalytic properties of Ni/MWCNTs and Ni/AC catalysts for hydrogen production via ammonia decomposition. Int. J. Hydrogen Energy 39, 277–287 (2014). https://doi.org/10.1016/j.ijhydene.2013.10.004

    Article  Google Scholar 

  26. Li, L.; Zhu, Z.H.; Yan, Z.F.; Lu, G.Q.; Rintoul, L.: Catalytic ammonia decomposition over Ru/carbon catalysts: the importance of the structure of carbon support. Appl. Catal. A 320, 166–172 (2007). https://doi.org/10.1016/j.apcata.2007.01.029

    Article  Google Scholar 

  27. Xiaolong, Y.; Chungu, X.; Xiong, X.; Xinyuan, M.; Bin, H.: Preparation and catalytic properties of barium cerate and yttrium-doped barium cerate supported ruthenium for ammonia synthesis. Chin. J. Catal. 31, 377–379 (2010). https://doi.org/10.1016/S1872-2067(09)60055-3

    Article  Google Scholar 

  28. Oka, R.; Tsukimori, T.; Inoue, H.; Masui, T.: Perovskite-type ALnO3 (A= Ca, Sr, Ba; Ln= Ce, Pr, Tb) oxides as environmentally friendly yellow pigments. J. Ceram. Soc. Jpn. 125, 652–656 (2017). https://doi.org/10.2109/jcersj2.17118

    Article  Google Scholar 

  29. Yang, X.-L.; Zhang, W.-Q.; Xia, C.-G.; Xiong, X.-M.; Mu, X.-Y.; Hu, B.: Low temperature ruthenium catalyst for ammonia synthesis supported on BaCeO3 nanocrystals. Catal. Commun. 11, 867–870 (2010). https://doi.org/10.1016/j.catcom.2010.03.008

    Article  Google Scholar 

  30. Li, W.; Wang, S.; Li, J.: Highly effective Ru/BaCeO3 catalysts with strong basic sites support for ammonia synthesis. Chem. Asian J. 14, 2815–2821 (2019). https://doi.org/10.1002/asia.201900618

    Article  Google Scholar 

  31. Lucentini, I.; Casanovas, A.; Llorca, J.: Catalytic ammonia decomposition for hydrogen production on Ni, Ru and NiRu supported on CeO2. Int. J. Hydrogen Energy. 44, 12693–12707 (2019). https://doi.org/10.1016/j.ijhydene.2019.01.154

    Article  Google Scholar 

  32. Yin, S.F.; Xu, B.Q.; Zhou, X.P.; Au, C.T.: A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications. Appl. Catal. A 277, 1–9 (2004). https://doi.org/10.1016/j.apcata.2004.09.020

    Article  Google Scholar 

  33. Horiuchi, Y.; Kamei, G.; Saito, M.; Matsuoka, M.: Development of ruthenium-loaded alkaline-earth titanates as catalysts for ammonia synthesis. Chem. Lett. 42, 1282–1284 (2013). https://doi.org/10.1246/cl.130574

    Article  Google Scholar 

  34. Okura, K.; Miyazaki, K.; Muroyama, H.; Matsui, T.; Eguchi, K.: Ammonia decomposition over Ni catalysts supported on perovskite-type oxides for the on-site generation of hydrogen. RSC Adv. 8, 32102–32110 (2018). https://doi.org/10.1039/C8RA06100A

    Article  Google Scholar 

  35. Cao, C.-F.; Wu, K.; Zhou, C.; Yao, Y.-H.; Luo, Y.; Chen, C.-Q.; Lin, L.; Jiang, L.: Electronic metal-support interaction enhanced ammonia decomposition efficiency of perovskite oxide supported ruthenium. Chem. Eng. Sci. (2022). https://doi.org/10.1016/j.ces.2022.117719

    Article  Google Scholar 

  36. Deng, Q.-F.; Zhang, H.; Hou, X.-X.; Ren, T.-Z.; Yuan, Z.-Y.: High-surface-area Ce0.8Zr0.2O2 solid solutions supported Ni catalysts for ammonia decomposition to hydrogen. Int. J. Hydrogen Energy 37, 15901–15907 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.069

    Article  Google Scholar 

  37. Morlanés, N.; Sayas, S.; Shterk, G.; Katikaneni, S.P.; Harale, A.; Solami, B.; Gascon, J.: Development of a Ba–CoCe catalyst for the efficient and stable decomposition of ammonia. Catal. Sci. Technol. 11, 3014–3024 (2021). https://doi.org/10.1039/D0CY02336A

    Article  Google Scholar 

  38. Yu, Y.; Gan, Y.-M.; Huang, C.; Lu, Z.-H.; Wang, X.; Zhang, R.; Feng, G.: Ni/La2O3 and Ni/MgO–La2O3 catalysts for the decomposition of NH3 into hydrogen. Int. J. Hydrogen Energy 45, 16528–16539 (2020). https://doi.org/10.1016/j.ijhydene.2020.04.127

    Article  Google Scholar 

  39. Gu, Y.-Q.; Jin, Z.; Zhang, H.; Xu, R.-J.; Zheng, M.-J.; Guo, Y.-M.; Song, Q.-S.; Jia, C.-J.: Transition metal nanoparticles dispersed in an alumina matrix as active and stable catalysts for COx-free hydrogen production from ammonia. J. Mater. Chem. A 3, 17172–17180 (2015). https://doi.org/10.1039/C5TA04179A

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from the Chemical and Materials Engineering Department, Faculty of Engineering, King Abdul-Aziz University, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seetharamulu Podila.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3142 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-attar, O.A., Podila, S. & Al-Zahrani, A.A. Preparation and Study of XCeO3 (X: Mg, Ca, Sr, Ba) Perovskite-type oxide supported Cobalt Catalyst for Hydrogen Production by Ammonia Decomposition. Arab J Sci Eng 48, 8667–8677 (2023). https://doi.org/10.1007/s13369-022-07255-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07255-w

Keywords

Navigation