Skip to main content

Advertisement

Log in

A Speech-Based Hybrid Decision Support System for Early Detection of Parkinson's Disease

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Parkinson’s disease is a neurological illness that affects individuals at the later stage of life. Most patients complain of voice or speech abnormalities during the nascent stage of this disease, and it is difficult to recognize these abnormalities. This creates a need for a speech signal-based Parkinson's detection system to aid clinicians in the diagnosis process. A hybrid Parkinson's disease detection system has been proposed in this research work. Two speech datasets have been used in the design of this system: The first is an Italian Parkinson's Voice & Speech dataset, and the other is Mobile Device Voice Recordings at King's College London dataset. Seventeen acoustic features have been generated from the voice samples available in the datasets using Parselmouth library. In addition, based on the significance of features, the eight most significant features have been used in the design of the model. These features have been selected using genetic algorithm method. Four classifiers, k-nearest neighbors, XGBoost, random forest, and logistic regression, have been used during classification stage. The accuracy, sensitivity, f-measure, specificity, and precision parameters have been used for the analysis of the designed system. The combination of a genetic algorithm-based feature selection approach and logistic regression classifier has given 100% accuracy on Italian Parkinson's Voice & Speech dataset. The same feature extraction and classifier combination on the Mobile Device Voice Recordings at King's College London dataset have attained an accuracy level of 90%. Results have shown that the proposed system has outperformed the system found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and material

Not Applicable.

Code availability

Not Applicable.

References

  1. Kotsavasiloglou, C.; Kostikis, N.; Hristu-Varsakelis, D.; Arnaoutoglou, M.: Machine learning-based classification of simple drawing movements in Parkinson’s disease. Biomed. Signal Process. Control 31, 174–180 (2017). https://doi.org/10.1016/j.bspc.2016.08.003

    Article  Google Scholar 

  2. “Parkinson’s disease”, World Health Organization. https://www.who.int/news-room/fact-sheets/detail/parkinson-disease, Accessed 19 June 2022

  3. Lamba, R.; Gulati, T.; Jain, A.: Comparative analysis of parkinson’s disease diagnosis system: a review. Adv. in Math.: Sci. J. 9(6), 3401–3408 (2020). https://doi.org/10.37418/amsj.9.6.20

    Article  Google Scholar 

  4. Ascherio, A.; Schwarzschild, M.A.: The epidemiology of Parkinson’s disease: risk factors and prevention. The Lancet Neurol. 15(12), 1257–1272v (2016). https://doi.org/10.1016/S1474-4422(16)30230-7

    Article  Google Scholar 

  5. Bhat, S.; Acharya, U.R.; Hagiwara, Y.; Dadmehr, N.; Adeli, H.: Parkinson’s disease: Cause factors, measurable indicators, and early diagnosis. Comput. Biol. Med. 102, 234–241 (2018). https://doi.org/10.1016/j.compbiomed.2018.09.008

    Article  Google Scholar 

  6. Ma, A.; Lau, K.K.; Thyagarajan, D.: Voice changes in Parkinson’s disease: What are they telling us? J. Clin. Neurosci. 72, 1–7 (2020). https://doi.org/10.1016/j.jocn.2019.12.029

    Article  Google Scholar 

  7. Lamba, R.; Gulati, T.; Al-Dhlan, K.A.; Jain, A.: A systematic approach to diagnose Parkinson’s disease through kinematic features extracted from handwritten drawings. Journal of Reliable Intelligent Environments 7(3), 253–262 (2021). https://doi.org/10.1007/s40860-021-00130-9

    Article  Google Scholar 

  8. Gupta, R.; Khari, M.; Gupta, D.; Crespo, R.G.: Fingerprint image enhancement and reconstruction using the orientation and phase reconstruction. Inf. Sci. 530, 201–218 (2020). https://doi.org/10.1016/j.ins.2020.01.031

    Article  MathSciNet  Google Scholar 

  9. Afzal, H.R.; Luo, S.; Afzal, M.K.; Chaudhary, G.; Khari, M.; Kumar, S.A.: 3D face reconstruction from single 2D image using distinctive features. IEEE Access. 8, 180681–218068 (2020). https://doi.org/10.1109/ACCESS.2020.3028106

    Article  Google Scholar 

  10. Raj, R.; Rajiv, P.; Kumar, P.; Khari, M.; Verdú, E.; Crespo, R.G.; Manogaran, G.: Feature based video stabilization based on boosted HAAR Cascade and representative point matching algorithm. Image Vis. Comput. 101, 103957 (2020). https://doi.org/10.1016/j.imavis.2020.103957

    Article  Google Scholar 

  11. Gupta, R.; Khari, M.; Gupta, V.; Verdú, E.; Wu, X. Herrera-Viedma, E. and González-Crespo, R.: (2020)Fast single image haze removal method for inhomogeneous environment using variable scattering coefficient.. http://www.techscience.com/CMES/v123n3/39310

  12. Lamba, R.; Gulati, T.; Alharbi, H.F.; Jain, A.: A hybrid system for Parkinson’s disease diagnosis using machine learning techniques. Inter. J. Speech Technol. 25(3), 583–593 (2021). https://doi.org/10.1007/s10772-021-09837-9

    Article  Google Scholar 

  13. Khoury, N.; Attal, F.; Amirat, Y.; Oukhellou, L.; Mohammed, S.: Data-driven based approach to aid Parkinson’s disease diagnosis. Sensors. 19(2), 242 (2019). https://doi.org/10.3390/s19020242

    Article  Google Scholar 

  14. Oh, S.L.; Hagiwara, Y.; Raghavendra, U.; Yuvaraj, R.; Arunkumar, N., Murugappan, M. and Acharya, U.R.: A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Computing and Applications. 1-7 (2020). https://doi.org/10.1007/s00521-018-3689-5

  15. Loconsole, C.; Cascarano, G.D.; Brunetti, A.; Trotta, G.F.; Losavio, G.; Bevilacqua, V.; Di Sciascio, E.: A model-free technique based on computer vision and sEMG for classification in Parkinson’s disease by using computer-assisted handwriting analysis. Pattern Recogn. Lett. 121, 28–36 (2019). https://doi.org/10.1016/j.patrec.2018.04.006

    Article  Google Scholar 

  16. Ertuğrul, Ö.F.; Kaya, Y.; Tekin, R.; Almalı, M.N.: Detection of Parkinson’s disease by shifted one-dimensional local binary patterns from gait. Expert Syst. Appl. 56, 156–163 (2016). https://doi.org/10.1016/j.eswa.2016.03.018

    Article  Google Scholar 

  17. Sivaranjini, S.; Sujatha, C.M.: Deep learning based diagnosis of Parkinson’s disease using convolutional neural network. Multimedia Tools Appl. 79(21–22), 15467–15479 (2020). https://doi.org/10.1007/s11042-019-7469-8

    Article  Google Scholar 

  18. Goyal, J.; Khandnor, P.; Aseri, T.C.: A Comparative Analysis of Machine Learning classifiers for Dysphonia-based classification of Parkinson’s Disease. Inter. J. Data Sci. Anal. 11(1), 69–83 (2020). https://doi.org/10.1007/s41060-020-00234-0

    Article  Google Scholar 

  19. Vásquez-Correa, J.C.; Arias-Vergara, T.; Orozco-Arroyave, J.R.; Vargas-Bonilla, J.F.; Arias-Londoño, J.D. and Nöth, E.: (2015) Automatic detection of Parkinson's disease from continuous speech recorded in non-controlled noise conditions. In Sixteenth Annual Conference of the International Speech Communication Association.. https://doi.org/10.21437/Interspeech.2015-36

  20. Appakaya, S.B., Sankar, R. and Sheybani, E.: (2021) Novel Unsupervised Feature Extraction Protocol using Autoencoders for Connected Speech: Application in Parkinson's Disease Classification. In 2021 Wireless Telecommunications Symposium (WTS), 1–5. https://doi.org/10.1109/WTS51064.2021.9433683

  21. Karan, B.; Sahu, S.S.; Mahto, K.: Parkinson disease prediction using intrinsic mode function-based features from speech signal. Biocybernetics and Biomedical Engineering. 40(1), 249–264 (2020). https://doi.org/10.1016/j.bbe.2019.05.005

    Article  Google Scholar 

  22. Quan, C.; Ren, K.; Luo, Z.: A Deep Learning-Based Method for Parkinson’s Disease Detection Using Dynamic Features of Speech. IEEE Access. 9, 10239–10252 (2021). https://doi.org/10.1109/ACCESS.2021.3051432

    Article  Google Scholar 

  23. Perez, C.; Campos-Roca, Y.; Naranjo, L.; Martín, J.: Diagnosis and tracking of Parkinson’s disease by using automatically extracted acoustic features. J Alzheimers Dis Parkinsonism. 6(260), 161–0460 (2016). https://doi.org/10.4172/2161-0460.1000260

    Article  Google Scholar 

  24. Rahman, A.; Rizvi, S.S.; Khan, A.; Afzaal Abbasi, A.; Khan, S.U.; Chung, T.S.: Parkinson’s Disease Diagnosis in Cepstral Domain Using MFCC and Dimensionality Reduction with SVM Classifier. Mob. Inf. Syst. (2021). https://doi.org/10.1155/2021/8822069

    Article  Google Scholar 

  25. Solana-Lavalle, G.; Rosas-Romero, R.: Analysis of voice as an assisting tool for detection of Parkinson’s disease and its subsequent clinical interpretation. Biomed. Signal Process. Control 66, 102415 (2021). https://doi.org/10.1016/j.bspc.2021.102415

    Article  Google Scholar 

  26. Liu, Y.; Li, Y.; Tan, X.; Wang, P.; Zhang, Y.: Local discriminant preservation projection embedded ensemble learning based dimensionality reduction of speech data of Parkinson’s disease. Biomed. Signal Process. Control 63, 102165 (2021). https://doi.org/10.1016/j.bspc.2020.102165

    Article  Google Scholar 

  27. Benba, A., Jilbab, A. and Hammouch, A.: (2016) Voice analysis for detecting patients with Parkinson's disease using the hybridization of the best acoustic features. International Journal on Electrical Engineering and Informatics. https://doi.org/10.15676/ijeei.2016.8.1.8

  28. Zhang, L.; Qu, Y.; Jin, B.; Jing, L.; Gao, Z.; Liang, Z.: An intelligent mobile-enabled system for diagnosing Parkinson disease: Development and validation of a speech impairment detection system. JMIR Med. Inform. 8(9), e18689 (2020). https://doi.org/10.2196/18689

    Article  Google Scholar 

  29. ER, M.B., Esme, I.S.I.K. and Ibrahim, I.S.I.K. (2021) Parkinson's Detection Based On Combined CNN And LSTM Using Enhanced Speech Signals With Variational Mode Decomposition. https://doi.org/10.21203/rs.3.rs-305818/v1

  30. Mohammadi, A.G.; Mehralian, P.; Naseri, A.; Sajedi, H.: Parkinson’s disease diagnosis: The effect of autoencoders on extracting features from vocal characteristics. Array. 11, 100079 (2021). https://doi.org/10.1016/j.array.2021.100079

    Article  Google Scholar 

  31. Tuncer, T.; Dogan, S.: A novel octopus based Parkinson’s disease and gender recognition method using vowels. Appl. Acoust. 155, 75–83 (2019). https://doi.org/10.1016/j.apacoust.2019.05.019

    Article  Google Scholar 

  32. Yaman, O.; Ertam, F.; Tuncer, T.: Automated Parkinson’s disease recognition based on statistical pooling method using acoustic features. Med. Hypotheses 135, 109483 (2020). https://doi.org/10.1016/j.mehy.2019.109483

    Article  Google Scholar 

  33. Tuncer, T.; Dogan, S.; Acharya, U.R.: Automated detection of Parkinson’s disease using minimum average maximum tree and singular value decomposition method with vowels. Biocybernetics Biomed. Eng. 40(1), 211–220 (2020). https://doi.org/10.1016/j.bbe.2019.05.006

    Article  Google Scholar 

  34. Goyal, J.; Khandnor, P.; Aseri, T.C.: A Hybrid Approach for Parkinson’s Disease diagnosis with Resonance and Time-Frequency based features from Speech Signals. Expert Syst. Appl. 182, 115283 (2021). https://doi.org/10.1016/j.eswa.2021.115283

    Article  Google Scholar 

  35. Loh, H.W.; Ooi, C.P.; Palmer, E.; Barua, P.D.; Dogan, S.; Tuncer, T.; Baygin, M.; Acharya, U.R.: GaborPDNet: Gabor transformation and deep neural network for Parkinson’s disease detection using EEG signals. Electronics 10(14), 1740 (2021). https://doi.org/10.3390/electronics10141740

    Article  Google Scholar 

  36. Giovanni Dimauro, Francesco Girardi.: (2019) Italian Parkinson's Voice and Speech.. https://doi.org/10.21227/aw6b-tg17

  37. “Italian Parkinson’s Voice and Speech Dataset”, available online: https://ieee-dataport.org/open-access/italian-parkinsons-voice-and-speech. Accessed 05 October 2021.

  38. Jaeger, D.T.H. and Stadtschnitzer, M.: Mobile Device Voice Recordings at King’s College London (MDVR-KCL) from both early and advanced Parkinson’s disease patients and healthy controls (2020). https://doi.org/10.5281/zenodo.2867216

  39. “Mobile Device Voice Recordings at King's College London”, available online: https://zenodo.org/record/2867216#.YtY1SHZBzIU. Accessed 10 November 2021.

  40. Teixeira, J.P.; Oliveira, C.; Lopes, C.: Vocal acoustic analysis–jitter, shimmer and hnr parameters. Procedia Technol. 9, 1112–1122 (2013). https://doi.org/10.1016/j.protcy.2013.12.124

    Article  Google Scholar 

  41. Rani, P.; Kumar, R.; Jain, A.; Chawla, S.K.: A Hybrid Approach for Feature Selection Based on Genetic Algorithm and Recursive Feature Elimination. International Journal of Information System Modeling and Design (IJISMD). 12(2), 17–38 (2021). https://doi.org/10.4018/IJISMD.2021040102

    Article  Google Scholar 

  42. Harold Robinson, Y.; Vimal, S.; Khari, M.; Hernández, F.C.L.; Crespo, R.G.: Tree-based convolutional neural networks for object classification in segmented satellite images. The Inter. J. High Performance Comput. Appl. (2020). https://doi.org/10.1177/1094342020945026

    Article  Google Scholar 

  43. Rani, P.; Kumar, R.; Sid, N.M.O.; Ahmed, A.J.: A decision support system for heart disease prediction based upon machine learning. J. Reliable Intelligent Environ. 7(3), 263–275 (2021). https://doi.org/10.1007/s40860-021-00133-6

    Article  Google Scholar 

  44. Tama, B.A.; Im, S.; Lee, S.: Improving an Intelligent Detection System for Coronary Heart Disease Using a Two-Tier Classifier Ensemble. Biomed. Res. Int. (2020). https://doi.org/10.1155/2020/9816142

    Article  Google Scholar 

  45. Rani, P.; Kumar, R.; Jain, A.: HIOC: a hybrid imputation method to predict missing values in medical datasets”. International Journal of Intelligent Computing and Cybernetics. (2021). https://doi.org/10.1108/IJICC-03-2021-0042

    Article  Google Scholar 

  46. Lamba, R.; Gulati, T.; Jain, A.: A Hybrid Feature Selection Approach for Parkinson’s Detection Based on Mutual Information Gain and Recursive Feature Elimination. Arabian J. Sci. Eng. 47(8), 10263–10276 (2022). https://doi.org/10.1007/s13369-021-06544-0

    Article  Google Scholar 

  47. Rani, P.; Kumar, R.; Jain, A.: Multistage Model for Accurate Prediction of Missing Values Using Imputation Methods in Heart Disease Dataset. In: Raj, J.S.; Iliyasu, A.M.; Bestak, R.; Baig, Z.A. (Eds.) Innovative Data Communication Technologies and Application: Proceedings of ICIDCA 2020, pp. 637–653. Springer Singapore, Singapore (2021). https://doi.org/10.1007/978-981-15-9651-3_53

    Chapter  Google Scholar 

  48. Khari, M.; Garg, A.K.; Crespo, R.G.; Verdú, E.: Gesture Recognition of RGB and RGB-D Static Images Using Convolutional Neural Networks. Int. J. Interact. Multim. Artif. Intell. 5(7), 22–27 (2019). https://doi.org/10.9781/ijimai.2019.09.002

    Article  Google Scholar 

  49. Lamba, R.; Gulati, T.; Jain, A.: Automated Parkinson’s Disease Diagnosis System Using Transfer Learning Techniques. In: Marriwala, N.; Tripathi, C.C.; Jain, S.; Mathapathi, S. (Eds.) Emergent Converging Technologies and Biomedical Systems: Select Proceedings of ETBS 2021, pp. 183–196. Springer Singapore, Singapore (2022). https://doi.org/10.1007/978-981-16-8774-7_16

    Chapter  Google Scholar 

  50. Pillai, M.S.; Chaudhary, G.; Khari, M.; Crespo, R.G.: Real-time image enhancement for an automatic automobile accident detection through CCTV using deep learning. Soft. Comput. 25(18), 1929–11940 (2021). https://doi.org/10.1007/s00500-021-05576-w

    Article  Google Scholar 

Download references

Funding

Not Applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Lamba.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamba, R., Gulati, T., Jain, A. et al. A Speech-Based Hybrid Decision Support System for Early Detection of Parkinson's Disease. Arab J Sci Eng 48, 2247–2260 (2023). https://doi.org/10.1007/s13369-022-07249-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07249-8

Keywords

Navigation