Skip to main content
Log in

Comparison of H3PO4 and ZnCl2 Activated Filtered Coffee Waste Carbon-Based Adsorbents in Methylene Blue Removal by Using Ultrasonic-Assisted Adsorption

  • Research Article--Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In sustainable waste management, reusing coffee waste such as husks or spent coffee grounds helps convert a huge amount of waste into a new resource. In this study, H3PO4-activated filter coffee waste (H3PO4-FCW) and ZnCl2-activated filter coffee waste (ZnCl2-FCW) were synthesised, and the characterisation of them was revealed by SEM, EDAX, FTIR and XRD analyses. Adsorption isotherms (Langmuir, Freundlich, Temkin and Dubinin–Radushkevich), adsorption kinetics (Elovich, pseudo-second-order kinetics, pseudo-first-order kinetics including error functions) and adsorption thermodynamics were determined and the effect of parameters such as pH, adsorbent dose, initial methylene blue (MB) concentration, adsorption time and temperature on MB removal was evaluated by the ultrasonic-assisted adsorption. It was observed that ultrasonic-assisted adsorption was more suitable for the Langmuir isotherm for both adsorbents and that the adsorption kinetics was better suited to the pseudo-second-order kinetics. In addition, the ultrasonic-assisted adsorption using H3PO4-FCW and ZnCl2-FCW occurred endothermically and the adsorption mechanism was physisorption. MB removal with ZnCl2-FCW could reach over 90% when pH is between 3 and 7 in the ultrasonic-assisted adsorption process. The maximum adsorption capacity was obtained as 42.7 mg/g and 106.4 mg/g for H3PO4-FCW and ZnCl2-FCW, respectively. It was seen that the qmax value of ZnCl2-FCW was 2.5 times higher than the qmax of H3PO4-FCW. Moreover, reusability studies showed that MB removal of over 90% could be achieved in the 2nd use of H3PO4-FCW and ZnCl2-FCW. In conclusion, high dye removal could be achieved by synthesising low-cost adsorbents. The use of filtered coffee wastes in the adsorption of basic dyes such as MB is, therefore, important in terms of both waste reduction and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cherdchoo, W.; Nithettham, S.; Charoenpanich, J.: Removal of Cr (VI) from synthetic wastewater by adsorption onto coffee ground and mixed waste tea. Chemosphere 221, 758–767 (2019). https://doi.org/10.1016/j.chemosphere.2019.01.100

    Article  Google Scholar 

  2. Botello-González, J.; Cerino-Córdova, F.J.; Dávila-Guzmán, N.E.; Salazar-Rábago, J.J.; Soto-Regalado, E.; Gómez-González, R.; Loredo-Cancino, M.: Ion exchange modeling of the competitive adsorption of Cu(II) and Pb(II) using chemically modified solid waste coffee. Water Air Soil. Pollut. 230(73), 1–14 (2019). https://doi.org/10.1007/s11270-019-4106-0

    Article  Google Scholar 

  3. Chiang, C.-H.; Chen, J.; Lin, J.-H.: Preparation of pore-size tunable activated carbon derived from waste coffee grounds for high adsorption capacities of organic dyes. J. Environ. Chem. Eng. 8(103929), 1–11 (2020). https://doi.org/10.1016/j.jece.2020.103929

    Article  Google Scholar 

  4. Lafi, R.; Hafiane, A.: Removal of methyl orange (MO) from aqueous solution using cationic surfactants modified coffee waste (MCWs). J. Taiwan Inst. Chem. Eng. 58, 424–433 (2016). https://doi.org/10.1016/j.jtice.2015.06.035

    Article  Google Scholar 

  5. Jawad, A.H.; Hum, N.N.M.F.; Abdulhameed, A.S.; Ishak, M.A.M.: Mesoporous activated carbon from grass waste via H3PO4- activation for methylene blue dye removal: modelling, optimisation, and mechanism study. J. Environ. Anal. Chem. (2020). https://doi.org/10.1080/03067319.2020.1807529

    Article  Google Scholar 

  6. Yorgun, S.; Yıldız, D.: Preparation and characterization of activated carbons from Paulownia wood by chemical activation with H3PO4. J. Taiwan Inst. Chem. Eng. 53, 122–131 (2015). https://doi.org/10.1016/j.jtice.2015.02.032

    Article  Google Scholar 

  7. Lim, W.C.; Srinivasakannan, C.; Balasubramanian, N.: Activation of palm shells by phosphoric acid impregnation for high yielding activated carbon. J. Anal. Appl. Pyrolysis 88, 181–186 (2010). https://doi.org/10.1016/j.jaap.2010.04.004

    Article  Google Scholar 

  8. He, X.; Ling, P.; Yu, M.; Wang, X.; Zhang, X.; Zheng, M.: Rice husk-derived porous carbons with high capacitance by ZnCl2 activation for super capacitors. Electrochim. Acta 105, 635–641 (2013). https://doi.org/10.1016/j.electacta.2013.05.050

    Article  Google Scholar 

  9. Benmahdi, F.; Oulmi, K.; Khettaf, S.; Kolli, M.; Merdrignac-Conanec, O.; Mandin, P.: Synthesis and characterization of microporous granular activated carbon from silver berry seeds using ZnCl2 activation. Fuller. Nanotub. Carbon Nanostruct. 29, 657–669 (2021). https://doi.org/10.1080/1536383X.2021.1878154

    Article  Google Scholar 

  10. Khataee, A.; Kayan, B.; Kalderis, D.; Karimi, A.; Akay, S.; Konsolakis, M.: Ultrasound-assisted removal of Acid Red 17 using nanosized Fe3O4-loaded coffee waste hydrochar. Ultrason. Sonochem. 35, 72–80 (2017). https://doi.org/10.1016/j.ultsonch.2016.09.004

    Article  Google Scholar 

  11. Baytar, O.; Ceyhan, A.A.; Şahin, Ö.: Production of activated carbon from Elaeagnus angustifolia seeds using H3PO4 activator and methylene blue and malachite green adsorption. Int. J. Phytoremediat. 23(7), 693–703 (2021). https://doi.org/10.1080/15226514.2020.1849015

    Article  Google Scholar 

  12. Franca, A.S.; Oliveira, L.S.; Ferreira, M.E.: Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 249, 267–272 (2009). https://doi.org/10.1016/j.desal.2008.11.017

    Article  Google Scholar 

  13. Murthy, T.P.K.; Gowrishankar, B.S.: Process optimisation of methylene blue sequestration onto physical and chemical treated cofee husk based adsorbent. SN Appl. Sci. 836, 1–18 (2020). https://doi.org/10.1007/s42452-020-2603-9

    Article  Google Scholar 

  14. Ronix, A.; Pezoti, O.; Souza, S.L.; Souza, I.P.A.F.; Bedin, K.C.; Souza, P.S.C.; Silva, T.L.; Melo, S.A.R.; Cazetta, A.L.; Almeida, V.C.: Hydrothermal carbonization of coffee husk: optimization of experimental parameters and adsorption of methylene blue dye. J. Environ. Chem. Eng. 5, 4841–4849 (2017). https://doi.org/10.1016/j.jece.2017.08.035

    Article  Google Scholar 

  15. Ahmed, A.A.; Ahmed, D.S.; El-Hiti, G.A.; Alotaibi, M.H.; Hashim, H.; Yousif, E.: SEM morphological analysis of irradiated polystyrene film doped by a Schiff base containing a 1,2,4-triazole ring system. Appl. Petrochem. Res. 9, 169–177 (2019). https://doi.org/10.1007/s13203-019-00235-6

    Article  Google Scholar 

  16. Kayyarapu, B.; Kumar, M.Y.; Mohommad, H.B.; Neeruganti, G.O.; Chekuri, R.: Structural, thermal and optical properties of pure and Mn2+ doped poly(vinyl chloride) films. Mater. Res. 19, 1167–1175 (2016). https://doi.org/10.1590/1980-5373-MR-2016-0239

    Article  Google Scholar 

  17. Anisuzzaman, S.; Joseph, C.G.; Krishnaiah, D.; Bono, A.; Suali, E.; Abang, S.; Fai, M.: Removal of chlorinated phenol from aqueous media by guava seed (Psidium guajava) tailored activated carbon. Water Resour. Ind. 16, 29–36 (2016). https://doi.org/10.1016/j.wri.2016.10.001

    Article  Google Scholar 

  18. Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M.: Methods for preparation and activation of activated carbon: a review. Environ. Chem. Lett. 18, 393–415 (2020). https://doi.org/10.1007/s10311-019-00955-0

    Article  Google Scholar 

  19. Ardekani, P.S.; Karimi, H.; Ghaedi, M.; Asfaram, A.; Purkait, M.K.: Ultrasonic assisted removal of methylene blue on ultrasonically synthesized zinc hydroxide nanoparticles on activated carbon prepared from wood of cherry tree: experimental design methodology and artificial neural network. J. Mol. Liq. 229, 114–124 (2017). https://doi.org/10.1016/j.molliq.2016.12.028

    Article  Google Scholar 

  20. Li, Y.; Li, Y.; Zang, H.; Chen, L.; Meng, Z.; Li, H.; Ci, L.; Du, Q.; Wang, D.; Wang, C.; Li, H.; Xia, Y.: ZnCl2-activated carbon from soybean dregs as a high efficiency adsorbent for cationic dye removal: isotherm, kinetic, and thermodynamic studies. Environ. Technol. 41(15), 2013–2023 (2020). https://doi.org/10.1080/09593330.2018.1554006

    Article  Google Scholar 

  21. Rammah, Y.S.; El-Agawany, F.I.; Mahmoud, K.A.; El-Mallawany, R.; Ilik, E.; Kilic, G.: FTIR, UV–Vis–NIR spectroscopy, and gamma rays shielding competence of novel ZnO-doped vanadium borophosphate glasses. J. Mater. Sci.: Mater. Electron. 31(12), 9099–9113 (2020). https://doi.org/10.1007/s10854-020-03440-5

    Article  Google Scholar 

  22. Benadjemia, M.; Millière, L.; Reinert, L.; Benderdouche, N.; Duclaux, L.: Preparation, characterization and Methylene Blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Fuel Process. Technol. 92, 1203–1212 (2011). https://doi.org/10.1016/j.fuproc.2011.01.014

    Article  Google Scholar 

  23. Silva, M.C.; Spessato, L.; Silva, T.L.; Lopes, G.K.P.; Zanella, H.G.; Yokoyama, J.T.C.; Cazetta, A.L.; Almeida, V.C.: H3PO4–activated carbon fibers of high surface area from banana tree pseudo-stem fibers: Adsorption studies of methylene blue dye in batch and fixed bed systems. J. Mol. Liq. 324(114771), 1–10 (2021). https://doi.org/10.1016/j.molliq.2020.114771

    Article  Google Scholar 

  24. Abdulhameed, A.S.; Hum, N.N.M.F.; Rangabhashiyam, S.; Jawad, A.H.; Wilson, L.D.; Yaseen, Z.M.; Al-Kahtani, A.A.; Al-Othman, Z.A.: Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3 activator. J. Environ. Chem. Eng. 9(105530), 1–12 (2021). https://doi.org/10.1016/j.jece.2021.105530

    Article  Google Scholar 

  25. Ovchinnikov, O.V.; Evtukhova, A.V.; Kondratenko, T.S.; Smirnov, M.S.; Khokhlov, V.Y.; Erina, O.V.: Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vib. Spectrosc. 86, 181–189 (2016). https://doi.org/10.1016/j.vibspec.2016.06.016

    Article  Google Scholar 

  26. Mahmood, T.; Ali, R.; Naeem, A.; Hamayun, M.; Aslam, M.: Potential of used Camellia sinensis leaves as precursor for activated carbon preparation by chemical activation with H3PO4; optimization using response surface methodology. Process Saf. Environ. Prot. 109, 548–563 (2017). https://doi.org/10.1016/j.psep.2017.04.024

    Article  Google Scholar 

  27. Ealias, A.M.; Saravanakumar, M.P.: A critical review on ultrasonic assisted dye adsorption: Mass transfer, half-life and half-capacity concentration approach with future industrial perspectives. Crit. Rev. Environ. Sci. Technol. 49(21), 1959–2015 (2019). https://doi.org/10.1080/10643389.2019.1601488

    Article  Google Scholar 

  28. Li, Y.; Li, Y.; Zang, H.; Chen, L.; Meng, Z.; Li, H.; Ci, L.; Du, Q.; Wang, D.; Wang, C.; Li, H.; Xia, Y.: ZnCl2-activated carbon from soybean dregs as a high efficiency adsorbent for cationic dye removal: isotherm, kinetic, and thermodynamic studies. Environ. Technol. 41, 2013–2023 (2020). https://doi.org/10.1080/09593330.2018.1554006

    Article  Google Scholar 

  29. Balci, B.; Erkurt, F.E.; Basibuyuk, M.; Budak, F.; Zaimoglu, Z.; Turan, E.S.; Yilmaz, S.: Removal of reactive Blue 19 from simulated textile wastewater by powdered activated carbon/maghemite composite. Sep. Sci. Technol. 57(9), 1408–1426 (2022). https://doi.org/10.1080/01496395.2021.1982979

    Article  Google Scholar 

  30. Agarwal, S.; Tyagi, I.; Gupta, V.K.; Ghasemi, N.; Shahivand, M.; Ghasemi, M.: Kinetics, equilibrium studies and thermodynamics of methylene blue adsorption on Ephedra strobilacea saw dust and modified using phosphoric acid and zinc chloride. J. Mol. Liq. 218, 208–218 (2016). https://doi.org/10.1016/j.molliq.2016.02.073

    Article  Google Scholar 

  31. Wang, J.; Guo, X.: Adsorption kinetic models: physical meanings, applications, and solving methods. J. Hazard. Mater. 390(122156), 1–18 (2020). https://doi.org/10.1016/j.jhazmat.2020.122156

    Article  Google Scholar 

  32. Foo, K.Y.; Hameed, B.H.: Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 156, 2–10 (2010). https://doi.org/10.1016/j.cej.2009.09.013

    Article  Google Scholar 

  33. Egbosiuba, T.C.; Abdulkareem, A.S.; Kovo, A.S.; Afolabi, E.A.; Tijani, J.O.; Auta, M.; Roos, W.D.: Ultrasonic enhanced adsorption of methylene blue onto the optimized surface area of activated carbon: adsorption isotherm, kinetics and thermodynamics. Chem. Eng. Res. Design 153, 315–336 (2020). https://doi.org/10.1016/j.cherd.2019.10.016

    Article  Google Scholar 

  34. Ghaedi, M.; Ghazanfarkhani, M.D.; Khodadoust, S.; Sohrabi, N.; Oftade, M.: Acceleration of methylene blue adsorption onto activated carbon prepared from dross licorice by ultrasonic: equilibrium, kinetic and thermodynamic studies. J. Ind. Eng. Chem. 20, 2548–2560 (2014). https://doi.org/10.1016/j.jiec.2013.10.039

    Article  Google Scholar 

  35. Heidarinejad, Z.; Rahmanian, O.; Fazlzadeh, M.; Heidari, M.: Enhancement of methylene blue adsorption onto activated carbon prepared from date press cake by low frequency ultrasound. J. Mol. Liq. 264, 591–599 (2018). https://doi.org/10.1016/j.molliq.2018.05.100

    Article  Google Scholar 

  36. Al-Ghouti, M.A.; Da’ana, D.A.: Guidelines for the use and interpretation of adsorption isotherm models: a review. J. Hazard. Mater. 393(122383), 1–22 (2020). https://doi.org/10.1016/j.jhazmat.2020.122383

    Article  Google Scholar 

  37. Reffas, A.; Bernardet, V.; David, B.; Reinert, L.; Bencheikh, L.; Dubois, M.; Batisse, N.; Duclaux, L.: Carbons prepared from coffee grounds by H3PO4 activation: characterization and adsorption of methylene blue and Nylosan Red N-2RBL. J. Hazard. Mater. 175(1–3), 779–788 (2010). https://doi.org/10.1016/j.jhazmat.2009.10.076

    Article  Google Scholar 

  38. Asfaram, A.; Ghaedi, M.; Hajati, S.; Goudarzi, A.: Synthesis of magnetic c-Fe2O3-based nanomaterial for ultrasonic assisted dyes adsorption: modeling and optimization. Ultrason. Sonochem. 32, 418–431 (2016). https://doi.org/10.1016/j.ultsonch.2016.04.011

    Article  Google Scholar 

  39. Bagheri, A.R.; Ghaedi, M.; Asfaram, A.; Bazrafshan, A.A.: Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: experimental design methodology. Ultrason. Sonochem. 34, 294–304 (2017). https://doi.org/10.1016/j.ultsonch.2016.05.047

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz İzlen Çifçi.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çifçi, D.İ., Aydın, N. Comparison of H3PO4 and ZnCl2 Activated Filtered Coffee Waste Carbon-Based Adsorbents in Methylene Blue Removal by Using Ultrasonic-Assisted Adsorption. Arab J Sci Eng 48, 8641–8653 (2023). https://doi.org/10.1007/s13369-022-07248-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07248-9

Keywords

Navigation