Skip to main content

Advertisement

Log in

Wind/Storage Power Scheduling Based on Time–Sequence Rolling Optimization

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Due to that participation of energy storage in wind power dispatch can improve scheduling reliability of Grid-accessed, the effectiveness depends on energy storage capacity and feasible energy management. Daily economic dispatch model is proposed firstly under the consideration of scheduling reliability and working characteristics of energy storage. Secondly, the Time–Sequence Rolling Optimal Ultra-short-term scheduling algorithm of energy storage is developed based on dynamic deviation estimation update. To deal with the problems caused by unforeseen prediction error of wind power or energy storage SOC (state-of-charge), relaxation factor of the allowable Grid-accessed power deviation range is introduced either in the scheduling algorithm to ensure reliability of established energy storage capacity. Finally, GA (Genetic Algorithm) and EMD (Empirical Mode Decomposition) are used in reference value setting of hybrid energy storage power distribution. The feasibility of the dispatch model and energy management strategy are verified by the wind/storage simulation platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ARMA:

Autoregressive moving average model

ARIMA:

Autoregressive integrated moving average model

BP:

Back-propagation

BA:

Bat algorithm

PSO:

Particle swarm optimization

OPRC:

Optimization power regression curve

DWT:

Discrete wavelet transform

SVM:

Support vector machines

SBL:

Sparse Bayesian learning

EDM:

Empirical dynamic modeling

KDE:

Kernel density estimation

GP:

Gaussian Process

DYGP:

Dynamic GP

DIGP:

Direct GP

STGP:

Static GP

IDGP:

Indirect GP

G_RQ:

Gaussian process regression with the rational quadratic kernel

G_SE:

Gaussian process regression with the squared exponential kernel

G_M52:

Gaussian process regression with the matern 5/2 kernel

G_Exp:

Gaussian process regression with the exponential kernel

GMR:

Generalized mapping regressor

RF:

Random forest

O2O:

One to one

GRF:

Generalized random forest

XGB:

Extreme gradient boosting

EMD:

Empirical mode decomposition

EEMD:

Ensemble empirical mode decomposition

CEEMDAN:

Complete ensemble empirical mode decomposition with adaptive noise

ELM:

Extreme learning machine

KELM:

kernel extreme learning machine

IELM:

Improved extreme learning machine

GA:

Genetic algorithm

ADQPSO:

Adaptive disturbance quantum PSO

LLE:

Local linear embedding

PCA:

principal component analysis

LZC:

Lempel-Ziv complexity

SSA:

Salp swarm algorithms

WPD:

Wavelet packet decomposition

VMD:

Variable mode decomposition

IGWO:

Improved gray wolf optimization

OS-ELM:

Online sequential-ELM

TMD:

Two-layer mode decomposition

NN:

Neural network

ICA:

Imperialistic competitive algorithm

MWNN:

Morlet wavelet neural network

T-SFNN:

T-S fuzzy neural network

WNN:

Wavelet-based neural network

NNWT:

Neural network with wavelet transform

k-NN:

k-Nearest neighbor

SGNN:

Superposition graph neural network

ANN:

Artificial neural network

MTS:

Memory tabu search

SNN:

Spiking neural network

WNF:

Wavelet neuro fuzzy

HPA:

Hybrid PSO–ANFIS

CNN:

Convolutional neural network

GRU:

Gated recurrent unit

MIV:

Mean impact value

GRNN:

Generalized regression neural network

D.E:

Dilation and erosion

DPK:

Differential privacy protection

K-mean:

k-means clustering algorithm

FNN:

Feed-forward neural network

ANFIS:

Adaptive Neuro-Fuzzy Inference System

PER:

Persistence

DSN:

Double-Stage neural network

DSA:

Double-Stage ANFIS

DSHGN:

Double-Stage Hybrid GA-NN

DSHPN:

Double-Stage Hybrid PSO-NN

BPNN:

Back-Propagation Neural Network

AM:

Adaptive Mutation

WPD:

Wavelet packet decomposition

GMDH:

Group method data handling

RBF:

Radial basis function

ACFOA:

Adaptive chaos fruit fly optimization algorithm

T2FNN:

Type-2 Fuzzy neural network

KNEA:

kernel-based nonlinear extension Arps

LSSVM:

Least squares support vector machines

IGSA:

Improved gravitational search algorithm

BN:

Beveridge-Nelson

ALO:

Ant lion optimization

S_C:

Support Vector with the Cubic kernel

S_CG:

Support Vector with the Coarse Gaussian kernel

S_FG:

Support Vector with the Fine Gaussian kernel

S_L:

Support Vector with the Linear kernel

S_MG:

Support Vector with the Medium Gaussian kernel

S_Q:

Support Vector with the quadratic kernel

SVR:

Support vector regression

CS:

Cuckoo search

LSTM:

Long short-term memory

DLSTM:

Deep long short-term memory

EFG:

Enhanced forget-gate

MLP:

Multi-layer perceptron

CRPSO:

Cooperative random particle swarm optimization

DE:

Differential evolution

SSO:

Simplified swarm optimization

QR:

Quantile regression

Reference

  1. Harlow, F.H.; Fromm, J.E.: Computer experiments in fluid dynamics. Sci. Am. 212(3), 104–110 (1965)

    Google Scholar 

  2. Alvarez Estrada, R.F.; Ramos, J.J.: Renormalization properties of a nonrelativistic persistent model. Nuovo Cimento A Ser. 50(3), 323–337 (1967)

    MathSciNet  Google Scholar 

  3. Wang, Y.; Liu, Y.; Li, L., et al.: Short-term wind power forecasting based on clustering pre-calculated CFD method. Energies. 11(4), 854–866 (2018)

    Google Scholar 

  4. Yongxia, L., Yanyan, Z.: A rolling ARMA method for Ultra-short term wind power prediction. 13th IEEE Conference on Automation Science and Engineering. China, Xi-An, 20-23 Aug 2017.

  5. Box, G.E.P.; Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 65(332), 1509–1527 (1970)

    MathSciNet  MATH  Google Scholar 

  6. Shi, Y.; Eberhart, R.C.: Parameter selection in particle swarm optimization. Lect. Notes Computer Sci. 1447(1), 591–600 (1998)

    Google Scholar 

  7. Yang, X.: A new metaheuristic Bat-Inspired algorithm. Nature Inspired Cooperative Strategies Optim. 284, 65–74 (2010)

    MATH  Google Scholar 

  8. Tang, L.; Dong, Y.: Wind power forecasting based on improved grid algorithm and BA-BP-ARMA Model. Water Resour. Power. 36(7), 211–214 (2018)

    Google Scholar 

  9. Wang, Y.; Wang, D.; Tang, Y.: Clustered hybrid wind power prediction model based on ARMA PSO-SVM and clustering methods. IEEE Access. 8, 7071–17079 (2020)

    Google Scholar 

  10. Peng, L.; Lin, Y.; Yong, T., et al.: Ultra-short-term combined prediction approach based on Kernel function switch mechanism. Renew. Energy 25, 842–866 (2021)

    Google Scholar 

  11. Tomek, I.: A generalization of the k-NN rule. Syst., Man Cybern. 6(2), 121–126 (1976)

    MathSciNet  MATH  Google Scholar 

  12. Ahmed, A.; Khalid, M.: Multi-step ahead wind forecasting using nonlinear autoregressive neural networks. Energy Procedia. 134(1), 192–204 (2017)

    Google Scholar 

  13. Sun, W.; Wang, Y.: Short term wind speed forecasting based on fast ensemble empirical mode decomposition, phase space reconstruction, sample entropy and improved back propagation neural network. Energy Conv. Manage. 18, 1–12 (2018)

    Google Scholar 

  14. Hur, S.-H.: Short-term wind speed prediction using Extended Kalman filter and machine learning. Energy Rep. 451, 1046–1054 (2021)

    Google Scholar 

  15. Malevič, T.L.: The empirical spectral distribution of a Gaussian process in linear regression schemes. IZV AKAD NAUK FIZ. 1964(6), 31–37 (1964)

    MathSciNet  Google Scholar 

  16. MaYang, J.M.; Lin, Y.: Ultra-short-term probabilistic wind turbine power forecast based on empirical dynamic modeling. IEEE Trans. Sustain. Energy. 11(2), 906–915 (2020)

    Google Scholar 

  17. Junho Lee, W.; Wang, F.H., et al.: Wind power prediction using ensemble learning-based models. IEEE Access. 8, 61517–61527 (2020)

    Google Scholar 

  18. Marvuglia, A.; Messineo, A.: Monitoring of wind farms’ power curves using machine learning techniques. Appl. Energy. 98, 574–583 (2012)

    Google Scholar 

  19. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    MATH  Google Scholar 

  20. Xue, H.; Jia, Y.; Wen, P., et al.: Using of improved models of Gaussian Processes in order to regional wind power forecasting. J. Cleaner Prod. 262, 121391–121400 (2020)

    Google Scholar 

  21. Hongfang, L.; Ma, X.; Huang, K., et al.: Prediction of offshore wind farm power using a novel two-stage model combining kernel-based nonlinear extension of the Arps decline model with a multi-objective grey wolf optimizer. Renew. Sustain. Energy Rev. 127, 109856–109872 (2020)

    Google Scholar 

  22. Torrésani, B.: Time-frequency representations: wavelet packets and optimal decomposition. ANN I H POINCARE-PR. 56(2), 215–234 (1992)

    MathSciNet  MATH  Google Scholar 

  23. Zhu, Q.Y.; Qin, A.K.; Suganthan, P.N., et al.: Evolutionary extreme learning machine. Pattern Recogn. 38(10), 1759–1763 (2005)

    MATH  Google Scholar 

  24. Seyedali, M.; Gandomi Amir, H.; Zahra, M.S.: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Google Scholar 

  25. Zhang, C.; Ding, M.; Wang, W., et al.: An improved ELM model based on CEEMD-LZC and manifold learning for short-term wind power prediction. IEEE Access. 7, 121472–121481 (2019)

    Google Scholar 

  26. Boyang, Q.; Lisi, F.: Research on short-term wind power prediction model based on ADQPSO-KELM. Int. J. Hydroelectr. Energy. 37(12), 190–193 (2019)

    Google Scholar 

  27. Yin, H.; Zuhong, O.; Chen, D., et al.: Ultra-short-term wind power prediction based on two-layer mode decomposition and cascaded deep learning. Power Syst. Technol. 44(2), 445–453 (2020)

    Google Scholar 

  28. Tan, L.; Han, J.; Zhang, H.: Ultra-short-term wind power prediction by salp swarm algorithm-based optimizing extreme learning machine. IEEE Power Energy Soc. Sect. 8, 44470–44484 (2020)

    Google Scholar 

  29. Mishra, S.P.: Short-term forecasting of wind power generation using extreme learning machine and its variants. Int. J. Power Energy Conv. 8(1), 68–89 (2017)

    MathSciNet  Google Scholar 

  30. Kennedy, D.; Selverston, A.I.; Remler, M.P.: Analysis of restricted neural networks. Science. 164(3887), 1448–1496 (1969)

    Google Scholar 

  31. Kais B.: Neuro-fuzzy Inferenz-systeme. Fuzzy Logic. 1993.

  32. Mottaghi, H.; Zandyeh, M.; Ayough, A.: Designing GA and ICA approaches to solve an originative job rotation scheduling problem regarding bordem costs. Allameh Tabataba’i University Press 6(16), 29–54 (2007)

    Google Scholar 

  33. Ghadi, M.J.; Gilani, S.H.; Afrakhte, H., et al.: A novel heuristic method for wind farm power prediction: a case study. Int. J. Electr. Powre Energy Syst. 63, 962–970 (2014)

    Google Scholar 

  34. Jahangir, H.; Golkar, M.A.; Alhameli, F., et al.: Short-term wind speed forecasting framework based on stacked denoising auto-encoders with rough ANN. Sustain. Energy Technol. Assess. 38, 100601–100613 (2020)

    Google Scholar 

  35. Wang, K.; Qi, X.; Liu, H., et al.: Deep belief network based K-means cluster approach for short term wind power forecasting. Energy. 165, 840–852 (2018)

    Google Scholar 

  36. Saoud, L.S.; Al-Marzouqi, H.; Deriche, M.: Wind speed forecasting using the stationary wavelet transform and quaternion adaptive-gradient methods. IEEE Access. 9, 127356–127367 (2021)

    Google Scholar 

  37. Mei, Y.; Zhang, Z.; Li, Xu., et al.: Superposition graph neural network for offshore wind power prediction. Fut. Gener. Computer Syst. 113, 145–157 (2020)

    Google Scholar 

  38. Swaroop, R.P.; Apurv, Y.; Harsha, Y., et al.: Predicting the output of a wind mill using ANN modelling. Recent Adv. Mech. Eng. 25, 207–215 (2021)

    Google Scholar 

  39. Wang, Z.; Feng, G.; Zhi, R., et al.: Seasonal division of 850 hPa South China Sea based on multi-element atmospheric condition similarity. Theor. Appl. Climatol. 139(3–4), 995–1006 (2020)

    Google Scholar 

  40. Hao, Y.; Dong, L.; Liao, X., et al.: A novel clustering algorithm based on mathematical morphology for wind power generation prediction. Renew. Energy. 136, 572–585 (2019)

    Google Scholar 

  41. İnan, T., Baba. A. F.: Prediction of Wind Speed Using Artificial Neural Networks and ANFIS Method. Innovations in Intelligent Systems and Applications Conferenc. 2020:1-5.

  42. Li, F.; Liao, H.-Y.: An intelligent method for wind power forecasting based on integrated power slope events prediction and wind speed forecasting. IEEE Trans. Electr. Electron. Eng. 13(8), 1099–1105 (2018)

    Google Scholar 

  43. Abinet Tesfaye, E., Zhang, J., Zheng, D.: et al. A double-stage hierarchical hybrid PSO-ANN model for short-term wind power prediction. 2017 2nd IEEE International Conference on Cloud Computing and Big Data Analysis. China, Chengdu, 28-30 Apr 2017.

  44. Li, H., Abinet Tesfaye, E., Zhang, J.: et al. A double-stage hierarchical hybrid PSO-ANFIS model for short-term wind power forecasting. 2017 9th Annual IEEE Green Technologies Conference. USA, Denver, 29-31 Mar 2017.

  45. Biswas, N.N.; Kumar, R.: A new algorithm for learning representations in boolean neural networks. Curr. Sci. 59(12), 595–600 (1990)

    Google Scholar 

  46. Zeng, G.; Ye, S.: A grey model for river water qualification and its grey parameters’ optimal estimation. J. Grey Syst. 1(1), 53–64 (1989)

    MathSciNet  MATH  Google Scholar 

  47. Li, L.; Li, Y.; Zhou, B., et al.: An adaptive time-resolution method for ultra-short-term wind power prediction. Int. J. Electr. Power Energy Syst. 118, 105814–105824 (2020)

    Google Scholar 

  48. M. Groch, J. Vermeulen. Short-Term Ensemble NWP wind speed forecasts using Mean-Variance Portfolio Optimization and Neural Networks. EEEIC / I&CPS. Europe, 2019:1-6.

  49. Pengchao, X.; Li, Y.; Zhao, Y.: Short-term wind power forecasting based on adaptive mutant bat optimized BP neural network. Electr. Measure. Instrumentation. 58(4), 97–104 (2021)

    Google Scholar 

  50. Han, Y.; Tong, X.: Multi-step short-term wind power prediction based on three-level decomposition and improved grey wolf optimization. IEEE Access. 8, 67124–67136 (2020)

    Google Scholar 

  51. Billingsley, F.P.; Shillady, D.D.: A discussion of integral transform radial basis functions. Chem. Phys. Lett. 5(2), 97–100 (1970)

    Google Scholar 

  52. Yang, X.; Deb, S.: Engineering optimisation by cuckoo search. Mathematics. 1(5), 330–343 (2010)

    MATH  Google Scholar 

  53. Wang, X.; Liu, J.; Bing, H., et al.: Short-term wind power prediction based on CS-SVR model. Computer Measure. Control. 28(1), 152–155 (2020)

    Google Scholar 

  54. Zhang, J.; Yan, J.; David, I., et al.: Short-term forecasting and uncertainty analysis of wind turbine power based on long short-term memory network and Gaussian mixture model. Appl. Energy. 241, 229–244 (2019)

    Google Scholar 

  55. Zhenghua, X.; Liu, S.; Wang, Z.: Wind power prediction based on kNN-SVR model. J. Electr. Power. 34(5), 411–416 (2019)

    Google Scholar 

  56. Xiang, L.; Deng, Z.; Hu, A.: Forecasting short-term wind speed based on IEWT-LSSVM model optimized by bird swarm algorithm. IEEE Access. 7, 59333–59345 (2019)

    Google Scholar 

  57. Hochreiter, S.; Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Google Scholar 

  58. Cui, S.; Peng, D.; Qian, Y.: Short-term wind power prediction based on the optimization of radial basis function by adaptive chaos fruit fly optimization algorithm. Renew. Energy. 35(1), 80–85 (2017)

    Google Scholar 

  59. Sharifian, A.; Ghadi, M.J.; Ghavidel, S., et al.: A new method based on Type-2 fuzzy neural network for accurate wind power forecasting under uncertain data. Renew. Energy. 120, 220–230 (2018)

    Google Scholar 

  60. Müller, K.R.; Smola, A.J.; Rätsch, G., et al.: Predicting time series with support vector machines. Artif. Neural Netw. 1327, 999–1004 (1997)

    Google Scholar 

  61. Suykens, J.A.K.; Vandewalle, J.: Least squares support vector machine classifiers. Neural Process. Lett. 9(3), 293–300 (1999)

    Google Scholar 

  62. Peng, L.; Ye, L.; Sun, B., et al.: A new hybrid prediction method of Ultra-Short-Term wind power forecasting based on EEMD-PE and LSSVM optimized by the GSA. Energies. 11(4), 697–709 (2018)

    Google Scholar 

  63. Jiang, Y.; Yang, X.; He, F., et al.: Super-short-time wind power forecasting based on EEMD-IGSA-LSSVM. J. Hunan University. 43(10), 70–78 (2016)

    Google Scholar 

  64. Guo, S.: Wind power forecasting based on BN decomposition and LSSVM model optimized by ALO. Smart Power. 45(7), 92–99 (2017)

    Google Scholar 

  65. Zhang, X.; Li, G.: Multi-step prediction method of short-term wind power based on the IEEMD and LS-SVM. Electr. Measure. Instrumentation. 57(6), 52–60 (2020)

    Google Scholar 

  66. Ji, G.; Yuan, Y.; Huang, J., et al.: Combined model based on EEMD-HS-SVM for short-term wind power prediction. Renew. Energy. 35(8), 1221–1228 (2017)

    Google Scholar 

  67. Kai, T.; Dinghui, W.: Short-term wind power forecasting based on VMD-JAYA-LSSVM. Control Eng. China 25, 7 (2019)

    Google Scholar 

  68. Support vector machines for classification and regression. University of Southampton: S.R. Gunn. 1998.

  69. Baobin, Z., Bo, S., Xiao, G.: et al. Ultra-short-term prediction of wind power based on EMD and DLSTM. Proceedings of the 14th IEEE Conference on Industrial Electronics and Applications. China, Xi-An, 19-21 June 2019.

  70. Wang, Y.; Xie, D.; Wang, X., et al.: Prediction of interaction between grid and wind farms based on PCA-LSTM Model. Proc. CSEE. 39(14), 4070–4081 (2019)

    Google Scholar 

  71. Ruiguo, Y.; Gao, J.; Mei, Y., et al.: LSTM-EFG for wind power forecasting based on sequential correlation features. Fut. Gener. Computer Syst. 93, 33–42 (2019)

    Google Scholar 

  72. Ikedaa, S.; Fujishigea, S.; Sawaracla, Y.: Non-linear prediction model of river flow by self-organization method. Int. J. Syst. Sci. 7(2), 165–176 (1976)

    Google Scholar 

  73. Holl John, H.: Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 2(2), 88–105 (1973)

    MathSciNet  MATH  Google Scholar 

  74. Changseok, B.; Wei Chang, Y.; Yuk Ying, C.: Simplified swarm optimization for life log data mining. IT Converg. Serv. 107, 583–589 (2011)

    Google Scholar 

  75. Yan, J.; Guoqing, H.: Short-term wind speed prediction: hybrid of ensemble empirical mode decomposition, feature selection and error correction. Energy Conv. Manage. 144(17), 340–350 (2017)

    Google Scholar 

  76. Yang, J.; Wang, X.; Luo, X., et al.: Intelligent combined prediction of wind power based on numerical weather prediction and fuzzy clustering. IFAC - Papers Online. 48(28), 538–543 (2015)

    Google Scholar 

  77. Hua, Y.; Zhengping, W.: A Hybrid Short-Term wind power prediction model combining data processing, multiple parameters optimization and Multi-Intelligent models apportion strategy. IEEE Access. 25, 227126–227140 (2020)

    Google Scholar 

  78. Lin, L.; Xia, D.; Dai, L., et al.: Chaotic analysis and prediction of wind speed based on Wavelet Decomposition. Processes. 9(1793), 1793–1805 (2021)

    Google Scholar 

  79. Ye, L.; Zhu, Q.; Zhao, Y.: Dynamic optimal combination model considering adaptive exponential for ultra-short term wind power prediction. Autom. Electr. Power Syst. 39(20), 12–18 (2015)

    Google Scholar 

  80. Yi, J.; Lin, W.; Jianxiong, H., et al.: An integrated Model-driven and Data-driven method for on-line prediction of transient stability of power system with wind power generation. IEEE Access. 8, 83472–83482 (2020)

    Google Scholar 

  81. Longbo, X.; Wang, W.; Zhang, T., et al.: Ultra-short-term wind power prediction based on neural network and mean impact value. Autom. Electr. Power Syst. 41(21), 40–45 (2017)

    Google Scholar 

  82. Chen, X.; Zhang, X.; Dong, M., et al.: Deep learning-based prediction of wind power for Multi-turbines in a wind farm. Front. Energy Res. 9, 723775–723781 (2021)

    Google Scholar 

  83. Rui, F., Min, Z., Yin, X.: et al. A Multi-level Two-stage optimal dispatch model for Wind-storage hybrid System. 39th Chinese Control Conference (CCC). 27-29 July 2020, Shenyang, China

  84. Jian, X.; Wang, B.; Sun, Y., et al.: A Day-ahead economic dispatch method considering extreme scenarios based on wind power uncertainty. CSEE J. Power Energy Syst. 5(2), 224–232 (2019)

    Google Scholar 

  85. Peter Praveen, J., Mahaboob, B. Donthi, R.: et al. On stochastic linear regression model selection. AIP Conference Proceedings. 2019; 2192(1):020068-020089.

  86. Ryabtseva, V.; Skomorokhov, A.: Critical power prediction using SVM algorithms. Procedia Computer Science. 169, 198–202 (2020)

    Google Scholar 

  87. Zhou, Y.; Zhou, N.; Lihua, G., et al.: Prediction of photovoltaic power output based on similar day analysis, genetic algorithm and extreme learning machine. Energy. 204, 117894–117903 (2020)

    Google Scholar 

  88. Dehua, Z.; Semero, Y.K.; Jianhua, Z., et al.: Short-term wind power prediction in microgrids using a hybrid approach integrating genetic algorithm, particle swarm optimization, and adaptive neuro-fuzzy inference systems. IEEJ Trans. Electr. Electron. Eng. 13(11), 1561–1567 (2018)

    Google Scholar 

  89. National Energy Commission. Interim measures for the administration of wind farm power prediction and prediction. Solar Energy. 2011; 5(14): 6-7.(Chinese)

  90. East China Electricity Regulatory Bureau. Rules for the implementation of auxiliary service management and grid-connected operation management of power scheduling in East China Region (Power Regulatory Market [2018] No.53) [Z]. 2018.(Chinese)

  91. National Commercial Electricity Prices-General Commercial Electricity Charges, State Grid Peak and Valley Electricity Price Period - Electricity Peak and Valley Time Period and Electricity Price, http://www.gklaser.com/yqkk/36959.html

  92. Paliwal Navin, K.: A day-ahead optimal scheduling operation of battery energy storage with constraints in hybrid power system. Procedia Computer Sci. 167, 2140–2152 (2020)

    Google Scholar 

  93. Antelis, J.M.; Rivera, C.A.; Galvis, E., et al.: Detection of SSVEP based on empirical mode decomposition and power spectrum peaks analysis. Biocybern. Biomed. Eng. 40(3), 1010–1021 (2020)

    Google Scholar 

Download references

Acknowledgements

This work is a part of the National Natural Science Research Programs of China (No. 61673226, U2066203, 61973178)), considerable Natural Science Research Projects of Colleges and Universities in Jiangsu Province of China (No. BE2021063), Natural Science Foundation of Jiangsu Province (BK20200969), Nantong Science and Technology Bureau Project (JC2018116), and Jiangsu Province's fifth ‘333 high-level talent training objects’ Project. The authors would like to thank for the supports from both the Ministry of Science and Technology and National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-hong Zhu.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Jh., Xu, R., Gu, J. et al. Wind/Storage Power Scheduling Based on Time–Sequence Rolling Optimization. Arab J Sci Eng 48, 6219–6236 (2023). https://doi.org/10.1007/s13369-022-07220-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07220-7

Keywords

Navigation