Skip to main content
Log in

Thermal Decomposition of 3-Nitro-1,2,4-Triazole-5-One (NTO) and Nanosize NTO Catalyzed by NiFe2O4

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nanosize Nickel ferrite (NiF) was synthesized by the co-precipitation methods, and its effect as a 5% by mass additive was studied on the thermal decomposition of micrometer and nanometer size NTO. In the presence of a 5% NiF additive, the thermal decomposition peak temperature of NTO was decreased from 276.36 to 260.18 °C and that of nanoNTO was decreased from 261.38 to 258.89 °C (β = 10 °C min−1). The kinetics parameters confirm the catalytic activity of NiF for the thermal decomposition of NTO, and nNTO as the parameters such as activation energy (NTO =  ~ 25.45% and nNTO =  ~ 45.94% decrement), and pre-exponential factor (NTO =  ~ 21.94% and nNTO =  ~ 43.12% decrement) were decreased when 5% NiF additive was added to NTO, and nNTO. The rate of the decomposition process was increased in the presence of a 5% NiF catalyst, indicating the faster thermal decomposition of both NTO, and nNTO in the presence of a nickel ferrite catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Benhammada, A.; Trache, D.: Thermal decomposition of energetic materials using TG-FTIR and TG-MS: a state-of-the-art review. Appl. Spectrosc. Rev. 55, 724–777 (2020)

    Article  Google Scholar 

  2. Jia, X.; Wei, L.; Liu, X.; Li, C.; Geng, X.; Fu, M.; Wang, J.; Hou, C.; Xu, J.: Fabrication and characterization of submicron scale spherical RDX, HMX, and CL-20 without soft agglomeration. J. Nanomater. 2019, e7394762 (2019)

    Article  Google Scholar 

  3. Du, L.; Jin, S.; Shu, Q.; Li, L.; Chen, K.; Chen, M.; Wang, J.: The investigation of NTO/HMX-based plastic-bonded explosives and its safety performance. Def. Technol. 18, 72–80 (2022)

    Article  Google Scholar 

  4. Lan, G.; Li, J.; Zhang, G.; Ruan, J.; Lu, Z.; Jin, S.; Cao, D.; Wang, J.: Thermal decomposition mechanism study of 3-nitro-1,2,4-triazol-5-one (NTO): combined TG-FTIR-MS techniques and ReaxFF reactive molecular dynamics simulations. Fuel 295, 120655 (2021)

    Article  Google Scholar 

  5. Hanafi, S.; Trache, D.; He, W.; Xie, W.-X.; Mezroua, A.; Yan, Q.-L.: Catalytic effect of 2D-layered energetic hybrid crystals on the thermal decomposition of 3-nitro-2,4-dihydro-3H-1,2,4-triazol-5-one (NTO). Thermochim. Acta 692, 178747 (2020)

    Article  Google Scholar 

  6. Prabhakaran, K.V.; Naidu, S.R.; Kurian, E.M.: XRD, spectroscopic and thermal analysis studies on 3-nitro-1,2,4-triazole-5-one (NTO). Thermochim. Acta 241, 199–212 (1994)

    Article  Google Scholar 

  7. Yang, G.; Nie, F.; Li, J.; Guo, Q.; Qiao, Z.: Preparation and characterization of nano-NTO explosive. J. Energ. Mater. 25, 35–47 (2007)

    Article  Google Scholar 

  8. Wu, X.; Liu, Z.; Zhu, W.: Theoretical studies of size effects on surfacial properties for CL-20 and NTO nanoparticles. Struct. Chem. 32, 565–580 (2021)

    Article  Google Scholar 

  9. Li, Y.; Zhang, T.; Li, J.; Li, C.; Guo, Z.; Ma, H.: Three-dimensional nickel foam templated MgCo2O4 nanowires as an efficient catalyst for the thermal decomposition of ammonium perchlorate. J. Solid State Chem. 288, 121426 (2020)

    Article  Google Scholar 

  10. Vara, J.A.; Dave, P.N.; Chaturvedi, S.: The catalytic activity of transition metal oxide nanoparticles on thermal decomposition of ammonium perchlorate. Def. Technol. 15, 629–635 (2019)

    Article  Google Scholar 

  11. Elbasuney, S.; Yehia, M.; Hamed, A.; Mokhtar, M.; Gobara, M.; Saleh, A.; Elsaka, E.; El-Sayyad, G.S.: Synergistic catalytic effect of thermite nanoparticles on HMX thermal decomposition. J. Inorg. Organomet. Polym. 31, 2293–2305 (2021)

    Article  Google Scholar 

  12. Wei, T.; Zhang, Y.; Xu, K.; Ren, Z.; Gao, H.; Zhao, F.: Catalytic action of nano Bi2WO6 on thermal decompositions of AP, RDX, HMX and combustion of NG/NC propellant. RSC Adv. 5, 70323–70328 (2015)

    Article  Google Scholar 

  13. Gorb, L.; Ilchenko, M.; Leszczynski, J.: Decomposition of 2,4,6-trinitrotoluene (TNT) and 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) by Fe13O13 nanoparticle: density functional theory study. Environ. Sci. Pollut. Res. (2022). https://doi.org/10.1007/s11356-022-20547-w

    Article  Google Scholar 

  14. Dave, P.; Thakkar, R.; Sirach, R.: Cobalt copper ferrite: burning rate modifier for composite solid propellants and its catalytic activity on the thermal decomposition of ammonium perchlorate. Res. Chem. Intermed. 48, 555–574 (2021)

    Article  Google Scholar 

  15. Cabrera, A.F.; Torres, C.E.R.; Juncal, L.C.; Meyer, M.; Stewart, S.J.: Effect of nanostructured ferrites MFe2O4 (M= Cu Co, Mg, Zn) on the thermal decomposition of ammonium nitrate. Appl. Energy Combustion Sci. 6, 100026 (2021)

    Article  Google Scholar 

  16. Kulkarni, P.B.; Reddy, T.S.; Nair, J.K.; Nazare, A.N.; Talawar, M.B.; Mukundan, T.; Asthana, S.N.: Studies on salts of 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4,6-trinitroanilino benzoic acid (TABA): potential energetic ballistic modifiers. J. Hazard. Mater. 123, 54–60 (2005)

    Article  Google Scholar 

  17. Mukundan, T.; Pur, G.N.; Nair, J.K.; Pansare, S.M.; Sinha, R.K.; Singh, H.: Explosive nitrotriazolone formulates. Def. Sci. J. 52, 127–133 (2002)

    Article  Google Scholar 

  18. Kumar, R.; Siril, P.F.; Soni, P.: Optimized synthesis of HMX nanoparticles using antisolvent precipitation method. J. Energ. Mater. 33, 277–287 (2015)

    Article  Google Scholar 

  19. Suresh, J.; Trinadh, B.; VikramBabu, B.; Reddy, P.V.S.S.S.N.; Sathish Mohan, B.; Rama Krishna, A.; Samatha, K.: Evaluation of micro-structural and magnetic properties of nickel nano-ferrite and Mn2+ substituted nickel nano-ferrite. Phys.: B Condens. Matter. 620, 413264 (2021)

    Google Scholar 

  20. Vigneswari, T.; Raji, P.: Structural and magnetic properties of calcium doped nickel ferrite nanoparticles by co-precipitation method. J. Mol. Struct. 1127, 515–521 (2017)

    Article  Google Scholar 

  21. Ali, R.; Khan, M.A.; Manzoor, A.; Shahid, M.; Haider, S.; Malik, A.S.; Sher, M.; Shakir, I.; Farooq Warsi, M.: Investigation of structural and magnetic properties of Zr-Co doped nickel ferrite nanomaterials. J. Magn. Magn. Mater. 429, 142–147 (2017)

    Article  Google Scholar 

  22. Nazim, M.; Khan, A.A.P.; Asiri, A.M.; Kim, J.H.: Exploring rapid photocatalytic degradation of organic pollutants with porous CuO nanosheets: synthesis, dye removal, and kinetic studies at room temperature. ACS Omega 6, 2601–2612 (2021)

    Article  Google Scholar 

  23. Flynn, J.H.; Wall, L.A.: A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci., Part C: Polym. Lett. 4, 323–328 (1966)

    Google Scholar 

  24. Ozawa, T.: A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881–1886 (1965)

    Article  Google Scholar 

  25. Kissinger, H.E.: Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 57, 217–221 (1956)

    Article  Google Scholar 

  26. Starink, M.J.: The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta 404, 163–176 (2003)

    Article  Google Scholar 

  27. Jiang, L.; Fu, X.; Fan, X.; Li, J.; Xie, W.; Zhou, Z.; Zhang, G.: Study on 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO) decomposition using online photoionization mass spectrometry and theoretical simulations. FirePhysChem. 1, 109–115 (2021)

    Article  Google Scholar 

  28. Du, L.; Jin, S.; Nie, P.; She, C.; Wang, J.: Initial decomposition mechanism of 3-Nitro-1,2,4-triazol-5-one (NTO) under shock loading: ReaxFF parameterization and molecular dynamic study. Molecules 26, 4808 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

Authors RS is thankful to DST (SR/NM/NT-1014/2016 (G)) for providing Junior Research Fellowship. The authors are grateful to the Department of Chemistry for the research facility, and the Department of Physics, Sardar Patel University, India, for providing XRD and Raman Facility.

Funding

The present work was funded by the Department of Science and Technology (DST), New Delhi, India (SR/NM/NT-1014/2016 (G)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pragnesh N. Dave.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 245 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dave, P.N., Sirach, R., Thakkar, R. et al. Thermal Decomposition of 3-Nitro-1,2,4-Triazole-5-One (NTO) and Nanosize NTO Catalyzed by NiFe2O4. Arab J Sci Eng 48, 467–474 (2023). https://doi.org/10.1007/s13369-022-07208-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07208-3

Keywords

Navigation