Skip to main content
Log in

Design and Analysis of LSANN-IPOMPPT with Zeta Converter in PV Systems for Fluctuating Atmospheric Circumstances

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Individual users are increasingly employing photovoltaic (PV) arrays on a commercial and small scale, and they are all attempting to obtain the maximum available power from the panels. The P-V characteristic of the PV module changes after every small-time duration because of the highly fluctuating atmospheric conditions. However, in such cases, it is indispensable to track the Maximum Power Point (MPP), and this becomes a strong nonlinear issue with a time-bounded solution. Therefore, this paper proposes a Logarithmic Seagull Artificial Neural Network-based Improved Perturb and Observe Maximum Power Point Tracking (LSANN-IPOMPPT) algorithm to acquire maximum power from the PV system. The temperature and irradiance are the input variables and the optimal current and voltages to trace the MPP are computed by using the LSANN method. Then, the IPOMPPT algorithm is built for the DC–DC converter, which functions as an interface connecting solar modules and the load for transferring maximum power. The DC–DC converter is tuned by an LSANN-IPOMPPT controller to exploit the solar array at a maximal power point. The tracking ability of the proposed LSANN-IPOMPPT is evaluated with current state-of-the-art approaches for differing irradiance and temperature levels. The simulation outcomes depicted that the implementation of LSANN-based IPOMPPT algorithm with a zeta converter exhibited a more efficient output power range than the existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(J_{{PV\left( {cur} \right)}} ,J_{{PV\left( {nom} \right)}}\) :

Current by incident light, photovoltaic current in nominal conditions

\(r_{SR} ,r_{PR}\) :

Series, shunt resistance

\(l,k_{BC}\) :

Ideality factor, Boltzmann constant

\(T_{tmp} ,T_{{v\left( {tmp} \right)}}\) :

Module temperature, cell reference temperature

\(Q_{E} ,w\) :

Semiconductor bandgap energy, charge of an electron

\(F_{irr} ,F_{{irr\left( {nom} \right)}}\) :

Solar irradiance, nominal value of irradiance

\(J_{shc} ,P_{opc}\) :

Short circuit current, open-circuit voltage

\(J_{shc\left( \kappa \right)} ,J_{rev}\) :

Short circuit current per temperature factor \(\kappa\), reverse saturation current

\(PW_{max}\) :

Maximum power

\(J_{{L_{ind\left( 1 \right)} }} ,J_{{L_{ind\left( 2 \right)} }}\) :

Ripple current of inductors in Zeta converter

\(P_{Vt}^{i/p} , P_{Vt}^{o/p}\) :

Input, output voltage of Zeta converter

\(L_{ind\left( 1 \right)} , L_{ind\left( 2 \right)}\) :

Inductors of Zeta converter

\(C_{cap}^{i/p} , C_{cap}^{o/p}\) :

Input, output capacitor of Zeta converter

\(J_{cur}^{o/p} ,P c_{cap}^{o/p}\) :

Output current, output ripple voltage of Zeta converter

\(St_{f} , \varphi_{D}\) :

Switching frequency, duty cycle of Zeta converter

\(\Delta_{tmp,irr}\) :

Temperature, irradiance of PV panel

\(\Omega_{wt\left( n \right)} , \wp_{bias} , \hbar_{AF}\) :

Assigned weight, bias values, activation function of neural network

\(J_{max} , P_{max}\) :

Maximum current, maximum voltage

\(err,Tar,Obs\) :

Error, target, and observed values in neural network

\({\text{Popsize}},max_{k}\) :

Seagull population size, maximum iteration

\(G_{nw\left( \Psi \right)} , \chi_{cur\left( \Psi \right)}\) :

New, current location of the search agent

\(\varpi_{\Psi } ,\,{\text{e}}\) :

Control frequency, motion behaviour of the search

\(\chi_{best\left( \Psi \right)} , \chi_{\Psi } \left( k \right)\) :

Best-fit search agent, best solution

\(r_{\Psi ,best\left( \Psi \right)}\) :

Range between best-fit search agent and other search agents

\(a,b,c\) :

Motion behaviour of seagull

\(d, q \,{\text{and}}\,f\) :

Radius of each turn of spiral, correlation constants

\(I_{ita}\) :

Inertia factor

\(opt\Psi_{hid\left( n \right),neu\left( n \right)}\) :

Optimal number of neurons and hidden layers

References

  1. Sulman, M.; Ali, M.: Impact of environmental factor’s on solar photovoltaic module and different material employed on it. Int. J. Eng. Res. Technol. 9(8), 623–630 (2020)

    Google Scholar 

  2. Peng, F.Z.; Gebbenand M.L.; Ge, B.: A compact nX DC–DC converter for photovoltaic power systems. In: IEEE Energy Conversion Congress and Exposition, 15–19 September 2013, Denver, CO, USA (2013)

  3. Kroeger, K.P.; Choi, S.; Bazzi, A.M.; Johnson, B.B., Krein, P.T.: A digital implementation of continuous-time ripple correlation control for photovoltaic applications. In: Power and Energy Conference at Illinois (PECI), 12–13 February 2010, Urbana, IL, USA (2010)

  4. Abdallatif, H.; Abdel-Qader, I.; Harb, A.: A fast MPPT algorithm for smart grid-PV connected system based on multiple sparse-aware time-varying step size adaptation technique. In: 10th International Renewable Energy Congress (IREC), 26–28 March 2019, Sousse, Tunisia (2019)

  5. Cao, G.; Sun, K.; Jiang, S.; Lu, S.; Wang, Y.: A modular DC/DC photovoltaic generation system for HVDC grid connection. Chin. J. Electr. Eng. 4(2), 56–64 (2018)

    Article  Google Scholar 

  6. Khallat, M.A.; Rahman, S.: A probabilistic approach to photovoltaic generator performance prediction. IEEE Trans. Energy Convers. 1(3), 34–40 (1986)

    Article  Google Scholar 

  7. Chy, D.K., Khaliluzzaman, M., Karim, R.: Analysing efficiency of DC–DC converters joined to PV system run by intelligent controller. In: International Conference on Electrical, Computer and Communication Engineering (ECCE), February 16–18, 2017, Cox’s Bazar, Bangladesh (2017)

  8. Panagea, I.S.; Tsanis, I.K.; Koutroulis, A.G.; Grillakis, M.G.: Climate change impact on photovoltaic energy output the case of Greece. Adv. Meteorol. 2014(4), 1–11 (2014)

    Article  Google Scholar 

  9. Dhahri, Y.; Ghedira, S.; Zrafi, R.; Besbes, K.: Design of an integrated inductor in micro-converter DC–DC for photovoltaic applications. In: International Conference on Engineering & MIS (ICEMIS), 8–10 May 2017, Monastir, Tunisia (2017)

  10. Demirtas, M.; Tamyurek, B.; Kurt, E.; Cetinbas, I.; Ozturk, M.K.: Effects of aging and environmental factors on performance of CdTe and CIS thin-film photovoltaic modules. J. Electron. Mater. 48(11), 6890–6900 (2019)

    Article  Google Scholar 

  11. Sasidharan, N.; Ongsakul, W.; Varghese, M.P.; Anooja, V.S.; Akhila R.: Efficient improvement of solar photovoltaic system using artificial cooling methods. In: International Conference on Power, Signals, Control and Computation (EPSCICON), 6–10 January 2018, Thrissur, India (2018)

  12. Amara, K.; Fekik, A.; Hocine, D.; Hamida, M.L.; Bourennane, E.-B.; Malek, T.A.; Malek, A.: Improved performance of a PV solar panel with adaptive neuro fuzzy inference system ANFISm based MPPT. In: 7th International Conference on Renewable Energy Research and Applications (ICRERA), 14–17 October 2018, Paris, France (2018)

  13. Elgendy, M.; Zahawi, B.; Atkinson, D.: Assessment of perturb and observe MPPT algorithm implementation techniques for PV pumping applications. IEEE Trans. Sustain. Energy. 3, 21–33 (2012)

    Article  Google Scholar 

  14. Sera, D.; Mathe, L.; Kerekes, T.; Spataru, S.V.; Teodorescu, R.: On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J. Photovolt. 3(3), 1070–1078 (2013)

    Article  Google Scholar 

  15. Gonzalez-Castano, C.; Marulanda, J.; Restrepo, C.; Kouro, S.; Alzate, A.; Rodriguez, J.: Hardware-in-the-loop to test an MPPT technique of solar photovoltaic system: a support vector machine approach. Sustainability 13(6), 3000 (2021)

    Article  Google Scholar 

  16. Yilmaz, U.; Kircay, A.; Borekci, S.: PV system fuzzy logic MPPT method and PI control as a charge controller. Renew. Sustain. Energy Rev. 81, 994–1001 (2018)

    Article  Google Scholar 

  17. Kumar, N.; Hussain, I.; Singh, B.; Panigrahi, B.K.: Rapid MPPT for uniformly and partial shaded PV system by using jaya DE algorithm in highly fluctuating atmospheric conditions. IEEE Trans. Ind. Inform. 13(5), 2406–2416 (2017)

    Article  Google Scholar 

  18. Priyadarshi, N.; Padmanaban, S.; Holm-Nielsen, J.B.; Blaabjerg, F.; Bhaskar, M.S.: An experimental estimation of hybrid ANFIS–PSO-based MPPT for PV grid integration under fluctuating sun irradiance. IEEE Syst. J. 14, 1218–1229 (2019)

    Article  Google Scholar 

  19. Titri, S.; Larbes, C.; Toumi, K.; Benatchba, K.: A new MPPT controller based on the ant colony optimization algorithm for photovoltaic systems under partial shading conditions. Appl. Soft Comput. 58, 465–479 (2017)

    Article  Google Scholar 

  20. Tao, H.; Ghahremani, M.; Ahmed, F.W.; Jing, W.; Nazir, M.S.; Ohshima, K.: A novel MPPT controller in PV systems with hybrid whale optimization-PS algorithm based ANFIS under different conditions. Control. Eng. Pract. 112, 1–12 (2021)

    Article  Google Scholar 

  21. Behera, M.K.; Saikia, L.C.: A new combined extreme learning machine variable steepest gradient ascent MPPT for PV system based on optimized PI-FOI cascade controller under uniform and partial shading conditions. Sustain. Energy Technol. Assess. 42(1), 1–17 (2020)

    Google Scholar 

  22. Villegas-Mier, C.G.; Rodriguez-Resendiz, J.; Álvarez-Alvarado, J.M.; Rodriguez-Resendiz, H.; Herrera-Navarro, A.M.; Rodríguez-Abreo, O.: Artificial neural networks in MPPT algorithms for optimization of photovoltaic power systems: a review. Micromachines 12, 1260 (2021)

    Article  Google Scholar 

  23. Lappalainen, K.; Valkealahti, S.: Effects of irradiance transition characteristics on the mismatch losses of different electrical PV array configurations. IET Renew Power Gener 11, 248–254 (2017)

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Divyasharon.

Ethics declarations

Conflict of interest

The authors have no relevant financial and non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Divyasharon, R., Narmatha Banu, R. Design and Analysis of LSANN-IPOMPPT with Zeta Converter in PV Systems for Fluctuating Atmospheric Circumstances. Arab J Sci Eng 48, 6053–6065 (2023). https://doi.org/10.1007/s13369-022-07196-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07196-4

Keywords

Navigation