Skip to main content

Advertisement

Log in

Indoor Localization for the Blind Based on the Fusion of a Metaheuristic Algorithm with a Neural Network Using Energy-Efficient WSN

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Blind and visually impaired people experience difficulty positioning themselves in unfamiliar areas; they may become disoriented and need help from another person. Referred to as ‘localization’, this task is one of the significant challenges frequently encountered by blind people in unfamiliar indoor and outdoor environments. This paper aims to design and implement an energy-efficient localization system (EELS) for the blind and visually impaired based on a Zigbee wireless network and an artificial neural network (ANN) used in indoor environments. The ANN algorithm was adopted to improve localization accuracy for the blind and visually impaired. The ANN was fused independently with six metaheuristic algorithms, namely backtracking search algorithm (BSA), crow search algorithm (CSA), gravitational search algorithm (GSA), slime mould algorithm (SMA), particle swarm optimization (PSO) and multi-verse optimizer-ANN (MVO), to determine the optimal neurons and learning rate of ANN. Consequently, the ANN’s performance was optimized and localization errors were improved. In addition, the power consumption of the EELS was minimized based on a proposed energy-efficient localization algorithm (EELA). The experimental results in indoor environments verified the potential of MVO-ANN in improving localization errors, achieving mean errors of 0.55 and 0.65 m in testing and validating phases, respectively. In addition, the EELS achieved a power savings of 63% based on EELA. Moreover, the EELS had better localization accuracy and power savings than other systems reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. World Health Organization (WHO)/World Report on Vision. https://www.who.int/news-room/fact-sheets/detail/blindness-and-visual-impairment. Accessed 8 October 2020

  2. Karmel, A.; Sharma, A.; Garg, D.: IoT based assistive device for deaf, dumb and blind people. Procedia. Comput. Sci. 165, 259–269 (2019)

    Google Scholar 

  3. Jiménez, M.F.; Mello, R.C.; Bastos, T.; Frizera, A.: Assistive locomotion device with haptic feedback for guiding visually impaired people. Med. Eng. Phys. 80, 18–25 (2020)

    Google Scholar 

  4. Real, S.; Araujo, A.: Navigation systems for the blind and visually impaired: past work, challenges, and open problems. Sensors 19, 3404 (2019)

    Google Scholar 

  5. Andò, B.; Baglio, S.; Lombardo, C.O.; Marletta, V.: Smart multisensor strategies for indoor localization. In: Pissaloux, E.; Velazquez, R. (Eds.) Mobility of visually impaired people: Fundamentals and ICT assistive technologies, pp. 585–595. Springer International Publishing, Cham (2018)

    Google Scholar 

  6. Yang, T.; Cabani, A.; Chafouk, H.: A survey of recent indoor localization scenarios and methodologies. Sensors 21, 8086 (2021)

    Google Scholar 

  7. Nagaraju, S.; Gudino, L.J.; Tripathi, N.; Sreejith, V.; Ramesha, C.K.: Mobility assisted localization for mission critical Wireless Sensor Network applications using hybrid area exploration approach. J. King Saud Univ. Comput. Inf. Sci. 33, 608–618 (2021)

    Google Scholar 

  8. Singh, P.; Mittal, N.; Singh, U.; Salgotra, R.: Naked mole-rat algorithm with improved exploration and exploitation capabilities to determine 2D and 3D coordinates of sensor nodes in WSNs. Arab. J. Sci. Eng. 46, 1155–1178 (2021)

    Google Scholar 

  9. Sinha, B.B.; Dhanalakshmi, R.: Recent advancements and challenges of internet of things in smart agriculture: a survey. Future. Gener. Comput. Syst. 126, 169–184 (2022)

    Google Scholar 

  10. Lu, C.-L.; Liu, Z.-Y.; Huang, J.-T.; Huang, C.-I.; Wang, B.-H.; Chen, Y.; Wu, N.-H.; Wang, H.-C.; Giarré, L.; Kuo, P.-Y.: Assistive navigation using deep reinforcement learning guiding robot With UWB/Voice beacons and semantic feedbacks for blind and visually impaired people. Front. Robot. AI 8, 1–15 (2021)

    Google Scholar 

  11. Árvai, L.: Application of smartwatches in elderly care with indoor localization functionality. iJIM 15, 174–186 (2021)

    Google Scholar 

  12. Albín-Rodríguez, A.-P.; De-La-Fuente-Robles, Y.-M.; López-Ruiz, J.-L.; Verdejo-Espinosa, Á.; Espinilla Estévez, M.: UJAm I location: a fuzzy indoor location system for the elderly. Int. J. Environ. Res. Public. Health. 18, 8326 (2021)

    Google Scholar 

  13. Yang, X.; Wang, Y.; Zhou, M.; Liu, Y.: pedestrian motion learning based indoor WLAN localization via spatial clustering. Wirel. Commun. Mob. Com. 2018, 2571671 (2018)

    Google Scholar 

  14. Tsirmpas, C.; Rompas, A.; Fokou, O.; Koutsouris, D.: An indoor navigation system for visually impaired and elderly people based on Radio Frequency Identification (RFID). Inform Sciences 320, 288–305 (2015)

    Google Scholar 

  15. Beingolea, J.R.; Zea-Vargas, M.A.; Huallpa, R.; Vilca, X.; Bolivar, R.; Rendulich, J.: Assistive devices: technology development for the visually impaired. Designs 5, 75 (2021)

    Google Scholar 

  16. Jawad, H.; Nordin, R.; Gharghan, S.K.; Jawad, A.; Ismail, M.: Energy-efficient wireless sensor networks for precision agriculture: a review. Sensors 17, 1781 (2017)

    Google Scholar 

  17. Adame, T.; Bel, A.; Carreras, A.; Melia-Segui, J.; Oliver, M.; Pous, R.: CUIDATS: An RFID–WSN hybrid monitoring system for smart health care environments. Future. Gener. Comp. Sy. 78, 602–615 (2018)

    Google Scholar 

  18. Mithran, N.; Venkatesan, M.: Effect of IR Transceiver orientation on gas/liquid two-phase flow regimes. Flow. Meas. Instrum. 58, 12–20 (2017)

    Google Scholar 

  19. Gharghan, S.K.; Nordin, R.; Ismail, M.: Energy-efficient ZigBee-based wireless sensor network for track bicycle performance monitoring. Sensors 14, 15573–15592 (2014)

    Google Scholar 

  20. Sikimić, M., Amović, M., Vujović, V., Suknović, B., and Manjak, D.: An overview of wireless technologies for IoT network. In: 19th International Symposium Infoteh-Jahorina (INFOTEH) East Sarajevo, Bosnia and Herzegovina (2020), 18–20 pp. 1–6

  21. Parthiban, K.; Sasikumar, S.: To implement positive feedback adiabatic logic (PFAL)-nand technique on low power zigbee applications for processor applications. Microprocess Microsy 76, 102856 (2019)

    Google Scholar 

  22. Tolani, M.; Singh, R.K.; Shubham, K.; Kumar, R.: Two-layer optimized railway monitoring system using Wi-Fi and ZigBee interfaced wireless sensor network. IEEE Sens J 17, 2241–2248 (2017)

    Google Scholar 

  23. Negra, R.; Jemili, I.; Belghith, A.: Wireless body area networks: Applications and technologies. Procedia Comput Sci 83, 1274–1281 (2016)

    Google Scholar 

  24. Menaria, V.K.; Jain, S.; Raju, N.; Kumari, R.; Nayyar, A.; Hosain, E.: NLFFT: A novel fault tolerance model using artificial intelligence to improve performance in wireless sensor networks. IEEE Access 8, 149231–149254 (2020)

    Google Scholar 

  25. Li, F.; Huang, G.; Yang, Q.; Xie, M.: Adaptive contention window MAC protocol in a global view for emerging trends networks. IEEE Access 9, 18402–18423 (2021)

    Google Scholar 

  26. Kochar, P.; Supriya, M.: Vehicle speed control using Zigbee and GPS. In: International Conference on Smart Trends for Information Technology and Computer Communications, (2016), pp. 847–854

  27. Nguyen, H.Q.; Duong, A.H.L.; Vu, M.D.; Dinh, T.Q.; Ngo, H.T.: Smart blind stick for visually impaired people. Cham 26, 145–165 (2021)

    Google Scholar 

  28. Gharghan, S.K.; Saad Fakhrulddin, S.; Al-Naji, A.; Chahl, J.: Energy-efficient elderly fall detection system based on power reduction and wireless power transfer. Sensors 19, 4452 (2019)

    Google Scholar 

  29. Andò, B.; Baglio, S.; Lombardo, C.O.: RESIMA: An assistive paradigm to support weak people in indoor environments. IEEE T. Instrum. Meas. 63, 2522–2528 (2014)

    Google Scholar 

  30. Aly, W.H.F.: MNDWSN for helping people with different disabilities. Int. J. Distrib. Sens. N 10, 489289 (2014)

    Google Scholar 

  31. Huang, J.; Yu, X.; Wang, Y.; Xiao, X.: An integrated wireless wearable sensor system for posture recognition and indoor localization. Sensors 16, 1825 (2016)

    Google Scholar 

  32. Elgendy, M.; Sik-Lanyi, C.; Kelemen, A.: A novel marker detection system for people with visual impairment using the improved Tiny-YOLOv3 Model. Comput. Methods. Programs. Biomed. 205, 106112 (2021)

    Google Scholar 

  33. Aziz, M.I.; Owens, T.; Zaman, U.K.u.: RSSI based localization of bluetooth devices using trilateration: an improved method for the visually impaired. In: 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Iasi, Romania, 28–30 June (2018), pp. 1–5

  34. Al-Madani, B.; Orujov, F.; Maskeliūnas, R.; Damaševičius, R.; Venčkauskas, A.: Fuzzy logic type-2 based wireless indoor localization system for navigation of visually impaired people in buildings. Sensors 19, 2114 (2019)

    Google Scholar 

  35. Martinez-Sala, A.; Losilla, F.; Sánchez-Aarnoutse, J.; García-Haro, J.: Design, implementation and evaluation of an indoor navigation system for visually impaired people. Sensors 15, 32168–32187 (2015)

    Google Scholar 

  36. Alghamdi, S.; van Schyndel, R.; Khalil, I.: Accurate positioning using long range active RFID technology to assist visually impaired people. J. Netw. Comput. Appl. 41, 135–147 (2014)

    Google Scholar 

  37. Keyes, A.; D’Souza, M.; and Postula, A.: Navigation for the blind using a wireless sensor haptic glove. In: 4th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 14–18 June (2015), pp. 361–364

  38. Lee, J.-h.; Kim, K.; Lee, S.-C.; Shin, B.-S.: Smart backpack for visually impaired person. In: International Conference on ICT for Smart Society, Jakarta, Indonesia, 13–14 June (2013), pp. 1–4

  39. Amutha, B.; Nanmaran, K.: Development of a ZigBee based virtual eye for visually impaired persons. Int. C Indoor. Posit Busan, South Korea 27–30, 564–574 (2014)

    Google Scholar 

  40. Obuchowicz, M.; Korbel, P.; Strumillo, P.: Ultra Wideband positioning technology in tracking moving objects in indoor spaces–a pilot study. In: Signal Processing Symposium (SPSympo), Krakow, Poland, 17-19 (2019), pp. 100-104

  41. Taniura, Y.; Oguchi, K.: Indoor location recognition method using RSSI values in system with small wireless nodes. In: 40th International Conference on Telecommunications and Signal Processing (TSP), Barcelona, Spain (2017), pp. 52–55

  42. Bui, T.D.; Le, M.T.; Nguyen, Q.C.: Electronically steerable antenna array for indoor positioning system. J. Electromag. Wave 33, 838–852 (2019)

    Google Scholar 

  43. Nagarajan, B.; Shanmugam, V.; Ananthanarayanan, V.; Bagavathi Sivakumar, P.: Localization and indoor navigation for visually impaired using bluetooth low energy. Smart Syst. IoT: Innov. Comput. Singapore 27, 249–259 (2019)

    Google Scholar 

  44. Basso, S.; Frigo, G.; Giorgi, G.: A smartphone-based indoor localization system for visually impaired people. In: IEEE International Symposium on Medical Measurements and Applications (MeMeA) proceedings, Turin, Italy, 7-9 (2015), pp. 543-548

  45. Bai, Y.; Jia, W.; Zhang, H.; Mao; Z.-H.; Sun, M.: Landmark-based indoor positioning for visually impaired individuals. In: 12th International Conference on Signal Processing (ICSP), Hangzhou, China, 19–23 (2014), pp. 668–671

  46. Cheraghi, S.A.; Namboodiri, V.; Walker, L.: GuideBeacon: Beacon-based indoor wayfinding for the blind, visually impaired, and disoriented. In: IEEE International Conference on Pervasive Computing and Communications (PerCom), Kona, HI, USA, 13–17 (2017), pp. 121–130

  47. Yang, X.; Liu, Z.; Nie, W.; He, W.; Pu, Q.: AP optimization for Wi-Fi indoor positioning-based on RSS feature fuzzy mapping and clustering. IEEE Access 8, 153599–153609 (2020)

    Google Scholar 

  48. Li, J.; Han, G.; Zhu, C.; Sun, G.: An indoor ultrasonic positioning system based on TOA for internet of things. Mob. Inf. Syst. 2016, 4502867 (2016)

    Google Scholar 

  49. Nguyen, T.-S.; Nguyen, T.-N.; Tran, Q.-S.; Huynh, T.-H.: Improvement of ultrasound-based localization system using sine wave detector and CAN network. J. Sens. Actuator. Netw. 6, 12 (2017)

    Google Scholar 

  50. Qi, J.; Liu, G.-P.: A robust high-accuracy ultrasound indoor positioning system based on a wireless sensor network. Sensors 17, 2554 (2017)

    Google Scholar 

  51. AlSharif, M.H.; Douik, A.; Ahmed, M.; Al-Naffouri, T.Y.; Hassibi, B.: Manifold optimization for high accuracy spatial location estimation using ultrasound waves. arXiv preprint arXiv:2103.15050 (2021)

  52. Esslinger, D.; Oberdorfer, M.; Zeitz, M.; Tarín, C.: Improving ultrasound-based indoor localization systems for quality assurance in manual assembly. In: IEEE International Conference on Industrial Technology (ICIT), Buenos Aires, Argentina, 26–28 (2020), pp. 563–570

  53. Ho, Y.H.; Chan, H.C.B.: Decentralized adaptive indoor positioning protocol using bluetooth low energy. Comput. Commun. 159, 231–244 (2020)

    Google Scholar 

  54. Hung, L.-P.; Huang, W.; Shih, J.-Y.; Liu, C.-L.: A novel IoT based positioning and shadowing system for dementia training. Int. J. Environ. Res. Public Health 18, 1610 (2021)

    Google Scholar 

  55. Kayukawa, S.; Ishihara, T.; Takagi, H.; Morishima, S.; Asakawa, C.: Guiding blind pedestrians in public spaces by understanding walking behavior of nearby Pedestrians. In: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 4, pp 1-22 (2020)

  56. Guerreiro, J.; Sato, D.; Ahmetovic, D.; Ohn-Bar, E.; Kitani, K.M.; Asakawa, C.: Virtual navigation for blind people: transferring route knowledge to the real-World. Int. J. Hum Comput. Stud. 135, 102369 (2020)

    Google Scholar 

  57. Murata, M.; Ahmetovic, D.; Sato, D.; Takagi, H.; Kitani, K.M.; Asakawa, C.: Smartphone-based indoor localization for blind navigation across building complexes. In: IEEE International Conference on Pervasive Computing and Communications (PerCom), Athens, Greece, 19–23 March (2018), pp. 1–10

  58. Blessing Christiana, K.; Subburam, S.; Nathiya, T.; Jasmin Aishwarya, M.: Alerting and emergency situation handling system for the visually-challenged people. Mater. Today: Proc. (2021). https://doi.org/10.1016/j.matpr.2020.12.914

    Article  Google Scholar 

  59. Li, N.; Chen, J.; Yuan, Y.; Tian, X.; Han, Y.; Xia, M.: A Wi-Fi indoor localization strategy using particle swarm optimization based artificial neural networks. Int. J. Distrib. Sens. N 12, 4583147 (2016)

    Google Scholar 

  60. Sharma, G.; Kumar, A.: Improved DV-Hop localization algorithm using teaching learning based optimization for wireless sensor networks. Telecommun Syst 67, 163–178 (2018)

    Google Scholar 

  61. Chen, H.; Zhang, Y.; Li, W.; Tao, X.; Zhang, P.: ConFi: Convolutional neural networks based indoor Wi-Fi localization using channel state information. IEEE Access 5, 18066–18074 (2017)

    Google Scholar 

  62. Gharghan, S.K.; Nordin, R.; Jawad, A.M.; Jawad, H.M.; Ismail, M.: Adaptive neural fuzzy inference system for accurate localization of wireless sensor network in outdoor and indoor cycling applications. IEEE Access 6, 38475–38489 (2018)

    Google Scholar 

  63. Rahman, M.W.; Tashfia, S.S.; Islam, R.; Hasan, M.M.; Sultan, S.I.; Mia, S.; Rahman, M.M.: The architectural design of smart blind assistant using IoT with deep learning paradigm. Internet of Things 13, 100344 (2021)

    Google Scholar 

  64. Nayyar, A.; Puri, V.,: A review of Arduino board’s, Lilypad’s & Arduino shields. In: 3rd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, India, 16–18 March (2016), pp. 1485–1492.

  65. Nayyar, A.: An encyclopedia coverage of Compiler’s, Programmer’s & simulator’s for 8051, PIC, AVR, ARM Arduino embedded technologies. IJRES 5, 18–42 (2016)

    Google Scholar 

  66. Adi, P.D.P.; Kitagawa, A.: Quality of Service and power consumption optimization on the IEEE 802.15. 4 pulse sensor node based on Internet of Things. IJACSA 10, 144–154 (2019)

  67. Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M.; Abu-AlShaeer, M.J.: Power reduction with sleep/wake on redundant data (SWORD) in a wireless sensor network for energy-efficient precision agriculture. Sensors 18, 3450 (2018)

    Google Scholar 

  68. SIM 800L. https://img.filipeflop.com/files/download/Datasheet_SIM800L.pdf. Accessed 4 March 2021.

  69. Sharma, K.; Goswami, L.: RFID based smart railway pantograph control in a different phase of power line. In: Second International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India, 15–17 July 2020, pp. 282–286

  70. Kahraman, M.; Turhan, C.: An intelligent indoor guidance and navigation system for the visually impaired. Assist Technol 1–9 (2021)

  71. Wang, J.; Liu, E.; Geng, Y.; Qu, X.; Wang, R.: A survey of 17 indoor travel assistance systems for blind and visually impaired people. IEEE Trans. Hum. Mach. Syst. 52, 134–148 (2022)

    Google Scholar 

  72. Gharghan, S.K.; Mohammed, S.L.; Al-Naji, A.; Abu-AlShaeer, M.J.; Jawad, H.M.; Jawad, A.M.; Chahl, J.: Accurate fall detection and localization for elderly people based on neural network and energy-efficient wireless sensor network. Energies 11, 2866 (2018)

    Google Scholar 

  73. Baloglu, U.B.; Talo, M.; Yildirim, O.; Tan, R.S.; Acharya, U.R.: Classification of myocardial infarction with multi-lead ECG signals and deep CNN. Pattern. Recognit. Lett. 122, 23–30 (2019)

    Google Scholar 

  74. Lih, O.S.; Jahmunah, V.; San, T.R.; Ciaccio, E.J.; Yamakawa, T.; Tanabe, M.; Kobayashi, M.; Faust, O.; Acharya, U.R.: Comprehensive electrocardiographic diagnosis based on deep learning. Artif. Intell. Med. 103, 101789 (2020)

    Google Scholar 

  75. Chen, H.; Guo, S.; Hao, Y.; Fang, Y.; Fang, Z.; Wu, W.; Liu, Z.; Li, S.: Auxiliary diagnosis for COVID-19 with deep transfer learning. J. Digit. Imaging 34, 231–241 (2021)

    Google Scholar 

  76. Aljanad, A.; Tan, N.M.; Agelidis, V.G.; Shareef, H.: Neural network approach for global solar irradiance prediction at extremely short-time-intervals using particle swarm optimization algorithm. Energies 14, 1213 (2021)

    Google Scholar 

  77. Mahdi, S.Q.; Gharghan, S.K.; Hasan, M.A.: FPGA-Based neural network for accurate distance estimation of elderly falls using WSN in an indoor environment. Measurement 167, 108276 (2021)

    Google Scholar 

  78. Zubaidi, S.L.; Abdulkareem, I.H.; Hashim, K.S.; Al-Bugharbee, H.; Ridha, H.M.; Gharghan, S.K.; Al-Qaim, F.F.; Muradov, M.; Kot, P.; Al-Khaddar, R.: Hybridised artificial neural network model with slime mould algorithm: a novel methodology for prediction of urban stochastic water demand. Water 12, 2692 (2020)

    Google Scholar 

  79. Mirjalili, S.; Mirjalili, S.M.; Hatamlou, A.: Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural. Comput. Appl. 27, 495–513 (2016)

    Google Scholar 

  80. Gharghan, S.K.; Nordin, R.; Ismail, M.: Energy efficiency of ultra-low-power bicycle wireless sensor networks based on a combination of power reduction techniques. J. Sensors 2016, 21 (2016)

    Google Scholar 

  81. Anwar, M.S.; Hossain, M.F.: A zigbee based centralized health monitoring wireless network for transformers in smart grid. In: 11th International Conference on Electrical and Computer Engineering (ICECE), Dhaka, Bangladesh, 17–19 (2020), pp. 335–338

  82. Silva, A.F.; Tavakoli, M.: Domiciliary Hospitalization through wearable biomonitoring patches: recent advances, technical challenges, and the relation to Covid-19. Sensors 20, 6835 (2020)

    Google Scholar 

  83. Zubaidi, S.L.; Al-Bugharbee, H.; Ortega-Martorell, S.; Gharghan, S.K.; Olier, I.; Hashim, K.S.; Al-Bdairi, N.S.S.; Kot, P.: A novel methodology for prediction urban water demand by wavelet denoising and adaptive neuro-fuzzy inference system approach. Water 12, 1628 (2020)

    Google Scholar 

  84. Lemley, J.; Bazrafkan, S.; Corcoran, P.: Smart augmentation learning an optimal data augmentation strategy. IEEE Access 5, 5858–5869 (2017)

    Google Scholar 

  85. Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K.: Convolutional neural networks: an overview and application in radiology. Insights Imaging 9, 611–629 (2018)

    Google Scholar 

  86. Liu, G.; Bao, H.; Han, B.: A stacked autoencoder-based deep neural network for achieving gearbox fault diagnosis. Math. Probl. Eng. 2018, 5105709 (2018)

    Google Scholar 

  87. Kumar, S.; Lee, S.-R.: Localization with RSSI values for wireless sensor networks: An artificial neural network approach. In: Proceedings of the 1st International Electronic Conference on Sensors and Applications 1, Seoul, Korea, 1–16 (2014)

  88. LD1117 Series. Low Drop Fixed and Adjustable Positive Voltage Regulators. https://www.sparkfun.com/datasheets/Components/LD1117V33.pdf. Accessed on 8 October 2020

  89. Daniş, F.S.; Cemgil, A.T.: Model-based localization and tracking using bluetooth low-energy beacons. Sensors 17, 2484 (2017)

    Google Scholar 

  90. Jondhale, S.R.; Deshpande, R.S.: GRNN and KF framework based real time target tracking using PSOC BLE and smartphone. Ad Hoc Netw 84, 19–28 (2019)

    Google Scholar 

  91. Gumaida, B.F.; Luo, J.: A hybrid particle swarm optimization with a variable neighborhood search for the localization enhancement in wireless sensor networks. Appl. Intell. 49, 3539–3557 (2019)

    Google Scholar 

  92. Rizk, H.; Torki, M.; Youssef, M.: CellinDeep: Robust and accurate cellular-based indoor localization via deep learning. IEEE Sens. J. 19, 2305–2312 (2019)

    Google Scholar 

  93. Ashraf, I.; Hur, S.; Park, Y.: Application of deep convolutional neural networks and smartphone sensors for indoor localization. Appl Sci 9, 2337 (2019)

    Google Scholar 

  94. Cheng, J.; Yan, H.; Zhou, A.; Liu, C.; Cheng, D.; Gao, S.; Zang, D.; Cheng, D.: Location prediction model based on the internet of vehicles for assistance to medical vehicles. IEEE Access 8, 10754–10767 (2020)

    Google Scholar 

  95. Munadhil, Z.; Gharghan, S.K.; Mutlag, A.H.; Al-Naji, A.; Chahl, J.: Neural network-based Alzheimer’s patient localization for wireless sensor network in an indoor environment. IEEE Access 8, 150527–150538 (2020)

    Google Scholar 

  96. Wang, Y.; Gao, J.; Li, Z.; Zhao, L.: Robust and accurate Wi-Fi fingerprint location recognition method based on deep neural network. Appl Sci 10, 321 (2020)

    Google Scholar 

  97. Cannizzaro, D.; Zafiri, M.; Jahier Pagliari, D.; Patti, E.; Macii, E.; Poncino, M.; Acquaviva, A.: A comparison analysis of BLE-based algorithms for localization in industrial environments. Electronics 9, 44 (2020)

    Google Scholar 

  98. Chen, P.; Zheng, X.; Gu, F.; Shang, J.: Path distance-based map matching for Wi-Fi fingerprinting positioning. Future. Gener. Comp. Syst. 107, 82–94 (2020)

    Google Scholar 

  99. Jondhale, S.R.; Shubair, R.; Labade, R.P.; Lloret, J.; Gunjal, P.R.: Application of Supervised Learning Approach for Target Localization in Wireless Sensor Network. In: Singh, P.K.; Bhargava, B.K.; Paprzycki, M.; Kaushal, N.C.; Hong, W.-C. (Eds.) Handbook of Wireless Sensor Networks: Issues and Challenges in Current Scenario’s, pp. 493–519. Springer International Publishing, Cham (2020)

    Google Scholar 

  100. Lee, G.: Recurrent neural network-based hybrid localization for worker tracking in an offshore environment. App. Sci. 10, 4721 (2020)

    Google Scholar 

  101. Munadhil, Z.; Gharghan, S.K.; Mutlag, A.H.: Distance estimation-based PSO between patient with Alzheimer’s disease and beacon node in wireless sensor networks. Arab. J. Sci. Eng. 46, 9345–9362 (2021)

    Google Scholar 

  102. Guo, T.; Chai, M.; Xiao, J.; Li, C.: A hybrid indoor positioning algorithm for cellular and Wi-Fi networks. Arab. J. Sci. Eng. 47, 2909–2923 (2021)

  103. Sodhro, A.H.; Chen, L.; Sekhari, A.; Ouzrout, Y.; Wu, W.: Energy efficiency comparison between data rate control and transmission power control algorithms for wireless body sensor networks. Int J Distrib Sens N 14, 1–18 (2018)

    Google Scholar 

  104. Wang, J.; Gao, Y.; Wang, K.; Sangaiah, A.K.; Lim, S.-J.: An affinity propagation-based self-adaptive clustering method for wireless sensor networks. Sensors 19, 2579 (2019)

    Google Scholar 

  105. Li, J.; Liu, W.; Wang, T.; Song, H.; Li, X.; Liu, F.; Liu, A.: Battery-friendly relay selection scheme for prolonging the lifetimes of sensor nodes in the internet of things. IEEE Access 7, 33180–33201 (2019)

    Google Scholar 

  106. Muladi, Firmansah, A.; Aripriharta, Zaeni, I.A.E.; Handayani, A.N.; Wirawan, I.M.; Horng, G.J: Adaptive power management for self-powered IoT on smart shoes. AIP Conf. Proc. 2228, 030019 (2020)

  107. Janik, P.; Janik, M.A.; Pielka, M.: Power saving by a smart breath sensor working in non-connectable advertising mode. Sens. Actuator A Phys. 315, 112324 (2020)

    Google Scholar 

  108. Boukhennoufa, I.; Amira, A.; Bensaali, F.; Soheilian Esfahani, S.: A novel gateway-based solution for remote elderly monitoring. J. Biomed. Inform. 109, 103521 (2020)

    Google Scholar 

  109. Maji, P.; Mondal, H.K.; Roy, A.P.; Poddar, S.; Mohanty, S.P.: iKardo: An Intelligent ECG device for automatic critical beat identification for smart healthcare. IEEE Trans. Consum. Electron. 67, 235–243 (2021)

    Google Scholar 

  110. Dell’Agnola, F.; Pale, U.; Marino, R.; Arza, A.; Atienza, D.: MBioTracker: Multimodal self-aware bio-monitoring wearable system for online workload detection. IEEE Trans. Biomed. Circuits. Syst. 15, 994–1007 (2021)

    Google Scholar 

  111. Bhasgi, S.S.; Terdal, S.: Energy and target coverage aware technique for mobile sink based wireless sensor networks with duty cycling. Int. J. Inf. Technol. 13, 2331–2343 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Medical Instrumentation Techniques Engineering staff, Electrical Engineering Technical College at the Middle Technical University, for their support while conducting this study.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Sadik Kamel Gharghan contributed to conceptualization, methodology, formal analysis, supervision. Rasha Diaa Al-Kafaji contributed to data curation, validation, investigation. Siraj Qays Mahdi contributed to resources, visualization, investigation. Salah L. Zubaidi contributed to software, data curation, writing—reviewing and editing. Hussein Mohammed Ridha contributed to data curation, software, methodology, writing—review and editing.

Corresponding author

Correspondence to Sadik Kamel Gharghan.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharghan, S.K., Al-Kafaji, R.D., Mahdi, S.Q. et al. Indoor Localization for the Blind Based on the Fusion of a Metaheuristic Algorithm with a Neural Network Using Energy-Efficient WSN. Arab J Sci Eng 48, 6025–6052 (2023). https://doi.org/10.1007/s13369-022-07188-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07188-4

Keywords

Navigation