Skip to main content
Log in

Optimizing the Effect of Ignition and Combustion on Carbon Oxidation Using Pulverized Fuel Burner

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In order to mitigate the cold start-up condition and other influencing parameters affecting the ignition and combustion, it is challenging to find the optimum condition for the ignition of different solid fuels with distinct chemical and physical properties. To increase the flexibility of lignite power plants, a newly developed start-up technique with plasma ignition technology is being implemented and studied. This work aims to experimentally evaluate the applicability of the plasma-integrated pilot-scale pulverized fuel burner under cold furnace conditions. Several operational parameters, such as thermal loads, air–fuel ratios, plasma powers and positions, and nozzle type, varied on two different types of lignite having distinct chemical and physical properties. Tests were conducted on a pilot-scale 500 kW in-house facility having an integrated plasma ignitor on a swirl burner. The tests results are compared and evaluated against the amount of carbon oxidized relative to the amount of carbon present in the coal. Results and findings on two different coals showed substantial response and flexibility of lignite under plasma ignition at cold start-ups. The results are used mutually with the stability of the flame to define the suitable operational range for each specific fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Prationo, W.; Zhang, J.; Cui, J.; Wang, Y.; Zhang, L.: Influence of inherent moisture on the ignition and combustion of wet Victorian brown coal in air-firing and oxy-fuel modes: Part 1: the volatile ignition and flame propagation. Fuel Process. Technol. 138, 670–679 (2015)

    Article  Google Scholar 

  2. Zheng, H.J.; Zhang, S.Y.; Guo, X.; Lu, J.F.; Dong, A.X.; Deng, W.X.; Tang, W.J.; Zhao, M.H.; Jin, T.: An experimental study on the drying kinetics of lignite in high temperature nitrogen atmosphere. Fuel Process. Technol. 126, 259–265 (2014)

    Article  Google Scholar 

  3. Solomon, P.R.; Hamblen, D.G.; Carangelo, R.M.; Serio, M.A.; Deshpande, G.V.: General model of coal devolatilization. Energy Fuels 2, 405–422 (2002)

    Article  Google Scholar 

  4. Joos, F.: Technische Verbrennung Verbrennungstechnik, Verbrennungsmodellierung, Emissionen. (2007)

  5. Salmasi, A.; Shams, M.; Chernoray, V.: Simulation of sub-bituminous coal hydrodynamics and thermochemical conversion during devolatilization process in a fluidized bed. Appl. Therm. Eng. 135, 325–333 (2018)

    Article  Google Scholar 

  6. Borah, R.C.; Rao, P.G.; Ghosh, P.: Devolatilization of coals of northeastern India in inert atmosphere and in air under fluidized bed conditions. Fuel Process. Technol. 91, 9–16 (2010)

    Article  Google Scholar 

  7. Wall, T.F.; Liu, G.S.; Wu, H.W.; Roberts, D.G.; Benfell, K.E.; Gupta, S.; Lucas, J.A.; Harris, D.J.: The effects of pressure on coal reactions during zpulverized coal combustion and gasification. Prog. Energy Combust. Sci. 28, 405–433 (2002)

    Article  Google Scholar 

  8. Mühlen, H.J.; Sowa, F.: Factors influencing the ignition of coal particles studies with a pressurized heated-grid apparatus. Fuel 74, 1551–1554 (1995)

    Article  Google Scholar 

  9. Xu, W.; Tomita, A.: Effect of temperature on the flash pyrolysis of various coals. Fuel 66, 632–636 (1987)

    Article  Google Scholar 

  10. Borah, R.C.; Ghosh, P.; Rao, P.G.: A review on devolatilization of coal in fluidized bed. Int. J. Energy Res. 35, 929–963 (2011)

    Article  Google Scholar 

  11. Niksa, S.: Modeling the devolatilization behavior of high volatile bituminous coals. Symp. Combust. 22, 105–114 (1989)

    Article  Google Scholar 

  12. Hesp, W.R.; Waters, P.L.: Thermal cracking of tars and volatile matter from coal carbonization. Ind. Eng. Chem. Prod. Res. Dev 9, 194–202 (1970)

    Google Scholar 

  13. Merwe, G. van der.: The influence of particle size and zdevolatilization conditions on the CO 2 gasification of Highveld coal

  14. Smoot, L.D.; Smith, P.J.: Coal Combustion and Gasification. Springer, US (1985)

    Book  Google Scholar 

  15. Morris, R.M.: Effect of particle size and temperature on volatiles produced from coal by slow pyrolysis. Fuel 69, 776–779 (1990)

    Article  Google Scholar 

  16. Kashiwagi, T.: A Radiative Ignition Model of a Solid Fuel. Combust. Sci. Technol. 8, 225–236 (1973)

    Article  Google Scholar 

  17. Spliethoff, H.: Power generation from solid fuels (2010)

  18. Smith, T.F.; Byun, K.-H.; Chen, L.-D.: Effects of radiative and conductive transfer on thermal ignition. Combust. Flame 73, 67–74 (1988)

    Article  Google Scholar 

  19. Annamalai, K.: Ignition and Combustion Characteristics of Coal/Graphite Particles Under Variable Pressures, (1975)

  20. Khatami, R.; Stivers, C.; Levendis, Y.A.: Ignition characteristics of single coal particles from three different ranks in O 2/N 2 and O 2/CO 2 atmospheres. Combust. Flame 159, 3554–3568 (2012)

    Article  Google Scholar 

  21. Arms, R.W.: The Ignition Temperature of Coal, (2007)

  22. Yi, B.; Zhang, L.; Mao, Z.; Huang, F.; Zheng, C.: Effect of the particle size on combustion characteristics of pulverized coal in an O2/CO2 atmosphere. Fuel Process. Technol. 128, 17–27 (2014)

    Article  Google Scholar 

  23. Fan, Y.S.; Zou, Z.; Cao, Z.; Xu, Y.; Jiang, X.: Ignition characteristics of pulverized coal under high oxygen concentrations. Energy Fuels 22, 892–897 (2008)

    Article  Google Scholar 

  24. Yan, R.; Zheng, C.; Wang, Y.; Zeng, Y.: Evaluation of combustion characteristics of Chinese high-ash coals. Energy Fuels 17, 1522–1527 (2003)

    Article  Google Scholar 

  25. Feng, B.; Yan, R.; Zheng, C.G.: Effect of ash components on the ignition and burnout of high ash coals. Dev. Chem. Eng. Miner. Process 7, 387–395 (1999)

    Article  Google Scholar 

  26. Joseph, T.J.; Thapa, D.S.; Patel, M.: Review on combustion optimization methods in pulverised coal fired boiler. Int. J. Eng. Dev. Res 5, 70–77 (2017)

    Google Scholar 

  27. Department of Mechanical Engineering : Pulverised coal burnersTitle, http://www.navoda-yaengg.in/wp-content/uploads/2015/09/L4_UNIT-1.pdf

  28. Stom, A.Development of a micro scale pulverised coal test burner, https://www.google.com/search?q=AJ+Stom%2C+“Development+of+a+micro+scale+pulverised+coal+test+burner%2C”+Magister%2C+North-West+University%2C+South+Africa.&oq=AJ+Stom%2C+“Development+of+a+micro+scale+pulverised+coal+test+burner%2C”+Magister%2C+North-West+

  29. Khare, S.P.; Wall, T.F.; Farida, A.Z.; Liu, Y.; Moghtaderi, B.; Gupta, R.P.: Factors influencing the ignition of flames from air-fired swirl pf burners retrofitted to oxy-fuel. Fuel 87, 1042–1049 (2008)

    Article  Google Scholar 

  30. Yu, Y.; Shademan, M.; Barron, R.M.; Balachandar, R.: Cfd study of effects of geometry variations on flow in a nozzle. Eng. Appl. Comput. Fluid Mech. 6, 412–425 (2012)

    Google Scholar 

  31. Ruth, L.A.: Advanced Pulverized Coal Combustion. In: National Energy Technology Laboratory

  32. Sugimoto, M.; Maruta, K.; Takeda, K.; Solonenko, O.P.; Sakashita, M.; Nakamura, M.: Stabilization of pulverized coal combustion by plasma assist. Thin Solid Films 407, 186–191 (2002)

    Article  Google Scholar 

  33. Zhang, K.; Liu, L.; Chirstian, H.; Feng, G.: Plasma Igntiion System for oil-free power plant Zetes in Turkey and its advantages for the changed circumstance of the energy market. VGB Power Tech. -Autorenexempla 7, 293–303 (2017)

    Google Scholar 

  34. Ju, Y.; Sun, W.: Plasma assisted combustion: Progress, challenges, and opportunities. Combust. Flame 162, 529–532 (2015)

    Article  Google Scholar 

  35. Karpenko, E.I.; Messerle, V.E.; Ustimenko, A.B.: Plasma-aided solid fuel combustion. In: Proceedings of the Combustion Institute, Elsevier Ltd, (2007) pp. 3353–3360

  36. Messerle, V.E.; Karpenko, E.I.; Ustimenko, A.B.: Plasma assisted power coal combustion in the furnace of utility boiler: Numerical modeling and full-scale test. Fuel 126, 294–300 (2014)

    Article  Google Scholar 

  37. Messerle, V.E.; Ustimenko, A.B.; Lavrichshev, O.A.: Plasma-assisted ignition and combustion of pulverized coal at thermal power plants of Kazakhstan. In: International Conference on Power Systems, Energy, Environment, pp. 197–203 (2014)

  38. Messerle, V.E.; Ustimenko, A.B.; Karpenko, E.I.: Plasma Technology for Enhancement of Pulverized Coal Ignition and Combustion. In: ISPC20 (2011)

  39. : Pilot scale test facilities | Institute of Combustion and Power Plant Technology | University of Stuttgart, https://www.ifk.uni-stuttgart.de/en/research/experimental-facilities/pilot-scale-test-facilities/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirza Hammad Baig.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baig, M.H., Azher, K. & Youssefi, R. Optimizing the Effect of Ignition and Combustion on Carbon Oxidation Using Pulverized Fuel Burner. Arab J Sci Eng 48, 3323–3337 (2023). https://doi.org/10.1007/s13369-022-07150-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07150-4

Keywords

Navigation