Skip to main content

Advertisement

Log in

Power Systems State Estimation Using Complex Synchronized PMU Measurements: Two Novel Non-Iterative Approaches

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

State estimation (SE) is one of the principal components in any energy management system for secure and reliable operation of power systems. The aim of state estimation process is to obtain the voltage magnitude and phase angles of buses which are further utilized in various real-time practice in power systems. This paper presents two new SE methods with the direct utilization of complex synchronized measurements obtained from optimally placed phasor measurements units (PMUs). Both the proposed methods use a linear measurement model to provide optimal solution avoiding iterative procedure compared to sub-optimal results provided by most of the existing iterative SE methods. The first method portrays a new static state estimation (NSSE) and the second one presents a new dynamic state estimation (NDSE) method using the more pragmatic Brown’s triple exponential (BTE) smoothing method for one step ahead prediction. The proposed approaches also include a unique detection, identification and correction of bad data method. The proposed methods have been tested on various IEEE bus test systems as well on two Indian practical systems, viz. 38-bus system of Damodar Valley Corporation and 246-bus system of Northern Regional Power Grid. The accomplishments of the proposed approaches have been evaluated by comparing it with conventional static state estimation (SSE) and dynamic state estimation (DSE) as well as newly proposed unscented Kalman filter-(UKF) and cubature Kalman filter (CKF)-based DSE methods under different simulated operating conditions. Simulation results provided validates the superiority of the proposed schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Durgaprasad, G.; Thakur, S.S.: Robust dynamic state estimation of power systems based on M-estimation and realistic modeling of system dynamics. IEEE Trans. Power Syst. 13(4), 1331–1336 (1998)

    Google Scholar 

  2. Durgaprasad, G.; Thakur, S.S.: A new approach to dynamic state estimation of power systems. Electr. Power Syst. Res. 45, 173–180 (1998)

    Google Scholar 

  3. Korres, G.N.; Manousakis, N.M.: State estimation and bad data processing for systems including PMU and SCADA measurements. Electr. Power Syst. Res. 81(7), 1514–1524 (2011)

    Google Scholar 

  4. Phadke, A.G.; Thorp, J.S.; Karimi, K.J.: State estimation with phasor measurement. IEEE Trans. Power Syst. 1(1), 233–238 (1986)

    Google Scholar 

  5. Xu, B.; Abur, A.: Observability analysis and measurement placement for systems with PMUs. In: IEEE PES power systems conference and exposition, pp. 943–946 (2004).

  6. Saha Roy, B.K.; Sinha, A.K.; Pradhan, A.: An optimal PMU placement technique for power system observability. Int. J. Elect. Power Energy Syst. 42(1), 71–77 (2012)

    Google Scholar 

  7. Ghosh, P.K.; Chatterjee, S.; Saha Roy, B.K.: Optimal PMU placement solution: graph theory and MCDM -based approach. IET Gener. Trans. Distrib. 11(13), 3371–3380 (2017)

    Google Scholar 

  8. Schweppe, F.C.; Wildes, J.: Power system static-state estimation, part i: exact model. IEEE Trans. Power. App. Syst. 89(1), 120–125 (1970)

    Google Scholar 

  9. Irving, M.R.; Owen, R.C.; Sterling, M.J.H.: Power-system state estimation using linear programming. Proc. Ins. Electr. Eng. 125(9), 879–885 (1978)

    Google Scholar 

  10. Van Cutsem, Th.; Horward, J.; Ribbens-Pavella, M.: A Two-level static state estimator for electric power systems. IEEE Trans. Power App. Syst. PAS-100(8), 3722–3732 (1981). https://doi.org/10.1109/TPAS.1981.317015

    Article  Google Scholar 

  11. Sasaki, H.; Aoki, K.; Yokoyama, R.: A parallel computation algorithm for static state estimation by means of matrix inversion lemma. IEEE Trans. Power Syst. 2(3), 624–631 (1987)

    Google Scholar 

  12. Munoz, J.M.R.; Exposito, A.G.: A line-current measurement-based state estimator. IEEE Trans. Power Syst. 7(2), 513–519 (1992)

    Google Scholar 

  13. Abur, A.; Exposito, A.G.: Detecting multiple solutions in state estimation in the presence of current magnitude measurements. IEEE Trans. Power Syst. 12(1), 370–375 (1997)

    Google Scholar 

  14. Phadke, A.G.: Synchronized phasor measurements in power systems. Comput. App. Power IEEE. 6(2), 10–15 (1993)

    Google Scholar 

  15. Lin, W.M.; Teng, J.H.; Chen, S.J.: A highly efficient algorithm in treating current measurements for the branch-current-based distribution state estimation. IEEE Trans. Power Del. 16(3), 433–439 (2001)

    Google Scholar 

  16. Jiang, W.; Vittal, V.; Heydt, G.T.: Diakoptic state estimation using phasor measurement units. IEEE Trans. Power Syst. 23(4), 1580–1589 (2008)

    Google Scholar 

  17. Bi, T.S.; Qin, X.H.; Yang, Q.X.: A novel hybrid state estimator including synchronized phasor measurements. Measurements. 78(8), 1343–1352 (2008)

    Google Scholar 

  18. Korres, G.N.: A robust algorithm for power system state estimation with equality constraints. IEEE Trans. Power Syst. 25(3), 1531–1541 (2010)

    Google Scholar 

  19. Sodhi, R.; Srivastava, S.C.; Singh, S.N.: Phasor-assisted Hybrid state estimator. Electr. Power Compon. Syst. 38(5), 533–544 (2010)

    Google Scholar 

  20. Mallick, S.; Ghoshal, S.P.; Acharjee, P.; Thakur, S.S.: Optimal static state estimation using improved particle swarm optimization and gravitational search algorithm. Int. J. Electr. Power Energy Syst. 52, 254–265 (2013)

    Google Scholar 

  21. Jiang, X.T.; Chow, J.H.; Fardanesh, B.; Maragal, D.; Stefopoulos, G.; Raxanousky, M.: Power system state estimation using a direct non-iterative method. Int. J. Elect. Power Energy Syst. 73, 361–368 (2015)

    Google Scholar 

  22. Chen, Y.; Liu, F.; Mei, S.; Ma, J.: A robust WLAV state estimation using optimal transformations. IEEE Trans. Power Syst. 30(4), 2190–2191 (2015)

    Google Scholar 

  23. Chen, Y.; Ma, J.; Zhang, P.; Liu, F.; Mei, S.: Robust state estimator based on maximum exponential absolute value. IEEE Trans. Smart Grid. 8(4), 1537–1544 (2017)

    Google Scholar 

  24. Manousakis, N.M.; Korres, G.N.: A hybrid power system state estimator using synchronized and unsynchronized sensors. Int. Trans. Electr. Energ. Syst. 28(8), e2580 (2018)

    Google Scholar 

  25. Dubey, A.; Chakrabarti, S.; Sharma, A.; Terzija, V.: Optimal utilisation of PMU measurements in power system hybrid state estimators. IET Gener. Transm. Distrib. 13(21), 4978–4986 (2019)

    Google Scholar 

  26. Dubey, A.; Chakrabarti, S.; Sharma, A.; Terzija, V.: SCADA and PMU measurement based methods for robust hybrid state estimation. Electr. Power Compon. Syst. 47(9–10), 849–860 (2019)

    Google Scholar 

  27. Dobakhshari, A.S.; Abdolmaleki, M.; Terzija, V.; Azizi, S.: Robust hybrid linear state estimator utilizing SCADA and PMU measurements. IEEE Trans. Power Syst. 36(2), 1264–1273 (2021)

    Google Scholar 

  28. Jovicic, A.; Hug, G.: Linear state estimation and bad data detection for power systems with RTU and PMU measurements. IET Gener, Transm Distrib. 14(23), 5675–5684 (2020)

    Google Scholar 

  29. Kundu, S.; Thakur, S.S.: Optimal PMU placement and state estimation in Indian practical systems considering multiple bad data and sudden change of load. In: 2019 IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS), pp. 279–284 (2019)

  30. Simon, D.: Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons (2006)

    Google Scholar 

  31. Mandal, J.K.: Incorporating nonlinearities of measurement function in power system dynamic state estimation. IEE Proc. Gener. Trans. Distrib. 142(3), 289 (1995). https://doi.org/10.1049/ip-gtd:19951715

    Article  Google Scholar 

  32. Valverde, G.; Terzija, V.: Unscented Kalman filter for power system dynamic state estimation. IET Gener. Transm. Distrib. 5(1), 29–37 (2011)

    Google Scholar 

  33. Wang, S.; Gao, W.; Meliopoulos, A.P.S.: An alternative method for power system dynamic state estimation based on unscented transform. IEEE Trans. Power Syst. 27(2), 942–950 (2012)

    Google Scholar 

  34. Singh, A.K.; Pal, B.C.: Decentralized dynamic state estimation in power systems using unscented transformation. IEEE Trans. Power Syst. 29(2), 794–804 (2014)

    MathSciNet  Google Scholar 

  35. Kundu, S.; Kumar, A.; Alam, M.; Roy, BKS.; Thakur, SS.: Unscented Kalman filter based dynamic state estimation in power systems using complex synchronized PMU measurements. In: Control applications in modern power system. pp. 99–110. Springer, Singapore (2021)

  36. Karimipour, H.; Dinavahi, V.: Extended Kalman filter-based parallel dynamic state estimation. IEEE Trans. Smart Grid. 6(3), 1539–1549 (2015)

    Google Scholar 

  37. Sharma, A.; Srivastava, S.C.; Chakrabarti, S.: A multi-agent-based power system hybrid dynamic state estimator. IEEE Int. Syst. 30(3), 52–59 (2015)

    Google Scholar 

  38. Sharma, A.; Srivastava, S.C.; Chakrabarti, S.: A cubature Kalman filter based power system dynamic state estimator. IEEE Trans. Instrum. Meas. 66(8), 2036–2045 (2017)

    Google Scholar 

  39. Zhao, J.; Netto, M.; Mili, L.: A robust iterated extended Kalman Filter for power system dynamic state estimation. IEEE Trans. Power Syst. 32(4), 3205–3216 (2017)

    Google Scholar 

  40. Goleijani, S.; Ameli, M.T.: Neural network-based power system dynamic state estimation using hybrid data from SCADA and phasor measurement units. Int. Trans. Electr. Energ. Syst. 28(2), e2481 (2018)

    Google Scholar 

  41. Geetha, S.J.; Sharma, A.; Chakrabarti, S.: Unscented Rauch-Tung–Streibel smoother-based power system forecasting-aided state estimator using hybrid measurements. IET Gener. Transm. Distrib. 13(16), 3583–3590 (2019)

    Google Scholar 

  42. Zhao, J.; Zheng, Z.; Wang, S.; Huang, R.; Bi, T.; Mili, L.; Huang, Z.: Correlation-aided robust decentralized dynamic state estimation of power systems with unknown control inputs. IEEE Trans. Power Syst. 35(3), 2443–2451 (2020)

    Google Scholar 

  43. Mohammed, I.; Geetha, S.J.; Shinde, S.S.; Rajawat, K.; Chakrabarti, S.: Modified re-iterated Kalman filter for handling delayed and lost measurements in power system state estimation. IEEE Sens. J. 20(7), 3946–3955 (2020)

    Google Scholar 

  44. Geetha, S.J.; Chakrabarti, S.; Rajawat, K.: Asynchronous hierarchical forecasting-aided state estimator with sub-area data validation for power systems. IEEE Sens. J. 21(2), 2124–2133 (2021)

    Google Scholar 

  45. Debs, A.S.; Larson, R.E.: A Dynamic estimator for tracking the state of a power system. IEEE Trans. Power App. Syst. 89(7), 1670–1678 (1970)

    Google Scholar 

  46. Nishiya, K.; Takagi, H.; Hasegawa, J.; Koike, T.: Dynamic state estimation for electric power systems. Introduction of a trend factor and detection of innovation process. Trans. Inst. Electr. Eng. Jpn. 96(10), 497–504 (1976)

    Google Scholar 

  47. da Silva, A.M.L.; Do CouttoFilho, M.B.; de Queiroz, J.F.: State forecasting in electric power systems. IEE Proc. C Gener. Trans. Distrib. 130(5), 237 (1983). https://doi.org/10.1049/ip-c.1983.0046

    Article  Google Scholar 

  48. Basetti, V.; Chandel, A.K.; Chandel, R.: Power system dynamic state estimation using prediction based evolutionary technique. Energy 107, 29–47 (2016)

    Google Scholar 

  49. Makridakis, S.; Wheelwright, S.C.; McGee, V.E.: Forecasting methods and applications. John Wiley & Sons, New York (1983)

    Google Scholar 

  50. Bretas, N.G.: An iterative dynamic state estimation and bad data processing. Int. J. Electr. Power Energy Syst. 11(1), 70–74 (1989)

    Google Scholar 

  51. Bretas, N.J.; London, J.B.A.; Alberto, L.F.C.; Benedito, R.A.S.: Geometrical approach on masked gross errors for power systems state estimation. In: IEEE Power & Energy Society General Meeting, pp.1–7 (2009)

  52. Abur, A.; Exposito, A.G.: Power system state estimation: theory and implementation. CRC Press (2004)

    Google Scholar 

  53. Northern Region Power Grid, 2007, available at http://www.nrldc.org

  54. Grigg, C.; Wong, P.; Albrecht, P.; Allan, R.; Bhavaraju, M.; Billinton, R.; Chen, Q.; Fong, C.; Haddad, S.; Kuruganty, S.; Li, W.; Mukerji, R.; Patton, D.; Rau, N.; Reppen, D.; Schneider, A.; Shahidehpour, M.; Singh, C.: The IEEE reliability test system-1996. a report prepared by the reliability test system task force of the application of probability methods subcommittee. IEEE Trans. Power Syst. 14(3), 1010–1020 (1999). https://doi.org/10.1109/59.780914

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhrajyoti Kundu.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, S., Alam, M., Roy, B.K.S. et al. Power Systems State Estimation Using Complex Synchronized PMU Measurements: Two Novel Non-Iterative Approaches. Arab J Sci Eng 48, 5935–5951 (2023). https://doi.org/10.1007/s13369-022-07145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07145-1

Keywords

Navigation