Skip to main content
Log in

Assessment of Thermal Properties of Nanoclay-Modified Bitumen

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, B50/70 penetration grade original bitumen was modified by adding nanoclay at 2%, 4%, 6%, and 8% ratios. Subsequently, penetration, softening point, and rotational viscometer tests were performed on non-aged and short-term aged samples. The effect of nanoclay addition to bitumen on the susceptibility of bitumen to high temperature was evaluated with different equations. Since the central focus of the study is to assess the temperature susceptibility and the reaction to thermal changes of the nanoclay added bitumen, a differential scanning calorimetry experiment was performed on the samples, and the temperature susceptibility criteria that are obtained from the binder experiment results such as penetration index, viscosity–temperature susceptibility, and pen-vis number were calculated. In addition, the temperature range in the rotational viscometer experiment was kept broad, and measurements were made at 10 °C increments. By fitting these measurements into the Arrhenius equation, activation energies of original and modified bitumen were obtained. The results revealed that adding nanoclay improved the temperature susceptibility, high-temperature performance, and the resistance properties to aging of the binders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Hunter, R.; Self, A.; Read, J.: The Shell Bitumen Handbook, 6th edn. Thomas Telford Ltd (2015)

    Google Scholar 

  2. Fini, E.H.; Hajikarimi, P.; Rahi, M.; Moghadas Nejad, F.: Physiochemical, rheological, and oxidative aging characteristics of asphalt binder in the presence of mesoporous silica nanoparticles. J. Mater. Civ. Eng. 28, 04015133 (2016). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001423

    Article  Google Scholar 

  3. Rahbar-Rastegar, R.; Daniel, J.S.; Dave, E.V.: Evaluation of viscoelastic and fracture properties of asphalt mixtures with long-term laboratory conditioning. Transp. Res. Rec. J. Transp. Res. Board 2672, 503–513 (2018). https://doi.org/10.1177/0361198118795012

    Article  Google Scholar 

  4. Pumphrey, M.E.: Evaluation of performance graded asphalt binder equipment and testing protocol. Master thesis, West Wirginia University. https://researchrepository.wvu.edu/etd/1396 (2003)

  5. Notani, M.A.; Arabzadeh, A.; Satvati, S.; Tarighati Tabesh, M.; Ghafari Hashjin, N.; Estakhri, S.; Alizadeh, M.: Investigating the high-temperature performance and activation energy of carbon black-modified asphalt binder. SN Appl. Sci. 2, 303 (2020). https://doi.org/10.1007/s42452-020-2102-z

    Article  Google Scholar 

  6. Ashish, P.K.; Singh, D.; Bohm, S.: Evaluation of rutting, fatigue and moisture damage performance of nanoclay modified asphalt binder. Constr. Build. Mater. 113, 341–350 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.057

    Article  Google Scholar 

  7. Ray, S.S.; Okamoto, M.: Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromol. Rapid Commun. 24, 815–840 (2003). https://doi.org/10.1002/marc.200300008

    Article  Google Scholar 

  8. Fang, C.; Yu, R.; Liu, S.; Li, Y.: Nanomaterials applied in asphalt modification: a review. J. Mater. Sci. Technol. 29, 589–594 (2013). https://doi.org/10.1016/j.jmst.2013.04.008

    Article  Google Scholar 

  9. Sun, L.; Xin, X.; Ren, J.: Asphalt modification using nano-materials and polymers composite considering high and low temperature performance. Constr. Build. Mater. 133, 358–366 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.073

    Article  Google Scholar 

  10. Crucho, J.; Picado-Santos, L.; Neves, J.; Capitão, S.: A review of nanomaterials’ effect on mechanical performance and aging of asphalt mixtures. Appl. Sci. 9, 3657 (2019). https://doi.org/10.3390/app9183657

    Article  Google Scholar 

  11. Yang, J.; Tighe, S.: A review of advances of nanotechnology in asphalt mixtures. Procedia Soc. Behav. Sci. 96, 1269–1276 (2013). https://doi.org/10.1016/j.sbspro.2013.08.144

    Article  Google Scholar 

  12. Bhat, F.S.; Mir, M.S.: Rheological investigation of asphalt binder modified with nanosilica. Int. J. Pavement Res. Technol. 14, 276–287 (2021). https://doi.org/10.1007/s42947-020-0327-2

    Article  Google Scholar 

  13. Mahali, I.; Sahoo, U.C.: Rheological characterization of nanocomposite modified asphalt binder. Int. J. Pavement Res. Technol. 12, 589–594 (2019). https://doi.org/10.1007/s42947-019-0070-8

    Article  Google Scholar 

  14. Baqersad, M.; Ali, H.: Recycling of RAP using nanoclay modified asphalt binder. Int. J. Pavement Res. Technol. 14, 778–788 (2021). https://doi.org/10.1007/s42947-021-0112-x

    Article  Google Scholar 

  15. Filho, P.G.T.M.; dos Santos, A.T.R.; Lucena, L.C.; Tenório, E.A.G.: Rheological evaluation of asphalt binder modified with nanoparticles of titanium dioxide. Int. J. Civ. Eng. 18, 1195–1207 (2020). https://doi.org/10.1007/s40999-020-00525-4

    Article  Google Scholar 

  16. Le Bach, V.; Le Phuc, V.: Performance evaluation of carbon nanotubes as a binder modifier for asphalt mixtures. Int. J. Civ. Eng. 19, 1143–1153 (2021). https://doi.org/10.1007/s40999-020-00599-0

    Article  Google Scholar 

  17. Sukhija, M.; Saboo, N.; Yadav, A.K.; Rath, C.: Laboratory study on the suitability of nano-silica as a modifier for asphalt binders. Constr. Build. Mater. 302, 124406 (2021). https://doi.org/10.1016/j.conbuildmat.2021.124406

    Article  Google Scholar 

  18. Rizvi, H.R.; Khattak, M.J.; Madani, M.; Khattab, A.: Piezoresistive response of conductive hot mix asphalt mixtures modified with carbon nanofibers. Constr. Build. Mater. 106, 618–631 (2016). https://doi.org/10.1016/j.conbuildmat.2015.12.187

    Article  Google Scholar 

  19. Wang, R.; Yue, M.; Xiong, Y.; Yue, J.: Experimental study on mechanism, aging, rheology and fatigue performance of carbon nanomaterial/SBS-modified asphalt binders. Constr. Build. Mater. 268, 121189 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121189

    Article  Google Scholar 

  20. Ezzat, H.; El-Badawy, S.; Gabr, A.; Zaki, E.S.I.; Breakah, T.: Evaluation of asphalt binders modified with nanoclay and nanosilica. Procedia Eng. 143, 1260–1267 (2016)

    Article  Google Scholar 

  21. Iskender, E.: Evaluation of mechanical properties of nano-clay modified asphalt mixtures. Meas. J. Int. Meas. Confed. 93, 359–371 (2016). https://doi.org/10.1016/j.measurement.2016.07.045

    Article  Google Scholar 

  22. Yılmaz, B.; Ebru Gürbüz, H.: Rheological and morphological evaluation of nanoclay modified asphalt binder. Constr. Build. Mater. 313, 125479 (2021). https://doi.org/10.1016/j.conbuildmat.2021.125479

    Article  Google Scholar 

  23. Abdelrahman, M.; Katti, D.R.; Ghavibazoo, A.; Upadhyay, H.B.; Katti, K.S.: Engineering physical properties of asphalt binders through nanoclay-asphalt interactions. J. Mater. Civ. Eng. 26, 04014099 (2014). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001017

    Article  Google Scholar 

  24. Yu, J.; Zeng, X.; Wu, S.; Wang, L.; Liu, G.: Preparation and properties of montmorillonite modified asphalts. Mater. Sci. Eng. A 447, 233–238 (2007). https://doi.org/10.1016/j.msea.2006.10.037

    Article  Google Scholar 

  25. de Melo, J.V.S.; Trichês, G.: Evaluation of properties and fatigue life estimation of asphalt mixture modified by organophilic nanoclay. Constr. Build. Mater. 140, 364–373 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.143

    Article  Google Scholar 

  26. Yao, H.; You, Z.; Li, L.; Goh, S.W.; Lee, C.H.; Yap, Y.K.; Shi, X.: Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy. Constr. Build. Mater. 38, 327–337 (2013). https://doi.org/10.1016/j.conbuildmat.2012.08.004

    Article  Google Scholar 

  27. You, Z.; Mills-Beale, J.; Foley, J.M.; Roy, S.; Odegard, G.M.; Dai, Q.; Goh, S.W.: Nanoclay-modified asphalt materials: preparation and characterization. Constr. Build. Mater. 25, 1072–1078 (2011). https://doi.org/10.1016/j.conbuildmat.2010.06.070

    Article  Google Scholar 

  28. Ghaffarpour Jahromi, S.; Ahmadi, N.A.; Mortazavi, S.M.; Vossough, S.: Rutting and fatigue behavior of nanoclay modified bitumen. Iran. J. Sci. Technol. Trans. B Eng. 35, 277–281 (2011)

    Google Scholar 

  29. Jahromi, S.G.; Ahmadi, N.A.; Vossugh, S.; Mortazavi, M.: Effects of nanoclay on rutting and fatigue resistance of bitumen binder. Int. J. Mater. Res. 103, 383–389 (2012). https://doi.org/10.3139/146.110588

    Article  Google Scholar 

  30. Li, R.; Xiao, F.; Amirkhanian, S.; You, Z.; Huang, J.: Developments of nano materials and technologies on asphalt materials—a review. Constr. Build. Mater. 143, 633–648 (2017). https://doi.org/10.1016/j.conbuildmat.2017.03.158

    Article  Google Scholar 

  31. Martinho, F.C.G.; Farinha, J.P.S.: An overview of the use of nanoclay modified bitumen in asphalt mixtures for enhanced flexible pavement performances. Road Mater. Pavement Des. 20, 671–701 (2019). https://doi.org/10.1080/14680629.2017.1408482

    Article  Google Scholar 

  32. Zhang, J.Z.; Van de Ven, M.; Wu, S.P.: Morphology and rheological analysis of nanoclay in polymer modified bitumen. Key Eng. Mater. 509, 155–161 (2012). https://doi.org/10.4028/www.scientific.net/KEM.509.155

    Article  Google Scholar 

  33. Siddig, E.A.A.; Feng, C.P.; Ming, L.Y.: Effects of ethylene vinyl acetate and nanoclay additions on high-temperature performance of asphalt binders. Constr. Build. Mater. 169, 276–282 (2018). https://doi.org/10.1016/j.conbuildmat.2018.03.012

    Article  Google Scholar 

  34. Kök, B.V.; Yilmaz, M.; Guler, M.: Evaluation of high temperature performance of SBS+Gilsonite modified binder. Fuel 90, 3093–3099 (2011). https://doi.org/10.1016/j.fuel.2011.05.021

    Article  Google Scholar 

  35. Lesueur, D.; Gérard, J.-F.; Claudy, P.; Létoffé, J.-M.; Martin, D.; Planche, J.-P.: Polymer modified asphalts as viscoelastic emulsions. J. Rheol. 42, 1059–1074 (1998). https://doi.org/10.1122/1.550918

    Article  Google Scholar 

  36. Sarnowski, M.; Kowalski, K.; Król, J.; Radziszewski, P.: Influence of overheating phenomenon on bitumen and asphalt mixture properties. Materials 12, 610 (2019). https://doi.org/10.3390/ma12040610

    Article  Google Scholar 

  37. Eyada, S.O.; Çelik, O.N.; Aldakuky, M.I.A.: Simple approach for the determination of temperature susceptibility characteristics of pure and modified asphalt binders. Arab. J. Sci. Eng. 46, 4665–4675 (2021). https://doi.org/10.1007/s13369-020-05081-6

    Article  Google Scholar 

  38. Saboo, N.; Singh, B.; Kumar, P.: Development of high-temperature ranking parameter for asphalt binders using Arrhenius model. J. Mater. Civ. Eng. 31, 04019297 (2019). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002965

    Article  Google Scholar 

  39. Abed, Y.H.; Abedali Al-Haddad, A.H.: Temperature susceptibility of modified asphalt binders. IOP Conf. Ser. Mater. Sci. Eng. (2020). https://doi.org/10.1088/1757-899X/671/1/012121

    Article  Google Scholar 

  40. Jiang, X.; Li, P.; Ding, Z.; Yang, L.; Zhao, J.: Investigations on viscosity and flow behavior of polyphosphoric acid (PPA) modified asphalt at high temperatures. Constr. Build. Mater. 228, 116610 (2019). https://doi.org/10.1016/j.conbuildmat.2019.07.336

    Article  Google Scholar 

  41. Saboo, N.; Singh, B.; Kumar, P.; Vikram, D.: Study on viscosity of conventional and polymer modified asphalt binders in steady and dynamic shear domain. Mech. Time Depend. Mater. 22, 67–78 (2018). https://doi.org/10.1007/s11043-017-9352-1

    Article  Google Scholar 

  42. Dehouche, N.; Kaci, M.; Mouillet, V.: The effects of mixing rate on morphology and physical properties of bitumen/organo-modified montmorillonite nanocomposites. Constr. Build. Mater. 114, 76–86 (2016). https://doi.org/10.1016/j.conbuildmat.2016.03.151

    Article  Google Scholar 

  43. Kriz, P.; Grant, D.; Boussad, N.; Gausson, D.; Cointe, F.; Toulemonde, C.; Shirts, R.: Assessment of performance specification tests for rheologically simple bitumens. In: Proceedings of 6th Eurasphalt & Eurobitume Congress. Czech Technical University in Prague (2016)

  44. Ye, Z.; Ren, W.; Yang, H.; Miao, Y.; Sun, F.; Wang, L.: An improved asphalt penetration test method. Materials 14, 147 (2020). https://doi.org/10.3390/ma14010147

    Article  Google Scholar 

  45. Zhu, J.; Lu, X.; Langfjell, M.; Gudmarsson, A.: Quantitative relationship of fundamental rheological properties of bitumen with the empirical ring and ball softening point. Road Mater. Pavement Des. 22, S345–S364 (2021). https://doi.org/10.1080/14680629.2021.1900898

    Article  Google Scholar 

  46. Yero, S.A.; Hainin, M.R.: Viscosity characteristics of modified bitumen. ARPN J. Sci. Technol. 2, 500–503 (2012)

    Google Scholar 

  47. ASTM D2872: Standard test method for effect of heat and air on a moving film of asphalt (rolling thin-film oven test). American Society for Testing and Materials, pp. 1–6 (2019)

  48. Honarmand, M.; Tanzadeh, J.; Jandaghi, H.R.: Low temperature study on the behavior of reinforced bitumen in asphalt via addition of synthesized basalt. J. Test. Eval. 47, 20180413 (2019). https://doi.org/10.1520/JTE20180413

    Article  Google Scholar 

  49. Felode, O.; Jonathan, G.; Ohinola, O.: Softening point and Penetration Index of bitumen from parts of Southwestern Nigeria. Nafta 63, 319–323 (2012)

    Google Scholar 

  50. Ray, S.; Bhuiyan, R.; Islam, M.; Abedin, M.; Nandy, P.; Islam, Z.; Hasan, M.; Nur, H.: Modification of 80–100 penetration grade bitumen. Bangladesh J. Sci. Ind. Res. 54, 307–320 (2019). https://doi.org/10.3329/bjsir.v54i4.44565

    Article  Google Scholar 

  51. Meltzer, R.; Fiorini, Y.; Horstman, R.; Moore, I.; Batik, A.; McLeod, N.: Asphalt cements: pen-vis number and its application to moduli of stiffness. J. Test. Eval. 4, 275 (1976). https://doi.org/10.1520/JTE10215J

    Article  Google Scholar 

  52. Mirzaiyan, D.; Ameri, M.; Amini, A.; Sabouri, M.; Norouzi, A.: Evaluation of the performance and temperature susceptibility of gilsonite- and SBS-modified asphalt binders. Constr. Build. Mater. 207, 679–692 (2019). https://doi.org/10.1016/j.conbuildmat.2019.02.145

    Article  Google Scholar 

  53. Rasmussen, R.O.; Lytton, R.L.; Chang, G.K.: Method to predict temperature susceptibility of an asphalt binder. J. Mater. Civ. Eng. 14, 246–252 (2002). https://doi.org/10.1061/(ASCE)0899-1561(2002)14:3(246)

    Article  Google Scholar 

  54. Erkuş, Y.; Kök, B.; Yilmaz, M.: Doğal Asfalt ve SBS Modifiyeli Bitümlü Bağlayıcıların Karşılaştırılması. Fırat Üniversitesi Mühendislik Bilimleri Dergisi 33, 81–90 (2021). https://doi.org/10.35234/fumbd.750237

    Article  Google Scholar 

  55. Salomon, D.; Zhai, H.: Asphalt binder flow activation energy and its significance for compaction effort. In: Proceedings of the 3rd Eurasphalt and Eurobitume Congress Held Vienna, May 2004, pp. 1754–1762 (2004)

  56. Ding, Z.; Zhang, J.; Li, P.; Yue, X.; Bing, H.: Analysis of viscous flow properties of styrene–butadiene–styrene-modified asphalt. Constr. Build. Mater. 229, 116881 (2019). https://doi.org/10.1016/j.conbuildmat.2019.116881

    Article  Google Scholar 

  57. Zhang, L.; Liu, Q.; Wu, S.; Rao, Y.; Sun, Y.; Xie, J.; Pan, P.: Investigation of the flow and self-healing properties of UV aged asphalt binders. Constr. Build. Mater. 174, 401–409 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.109

    Article  Google Scholar 

  58. Jin, D.; Wang, J.; You, L.; Ge, D.; Liu, C.; Liu, H.; You, Z.: Waste cathode-ray-tube glass powder modified asphalt materials: preparation and characterization. J. Clean. Prod. 314, 127949 (2021). https://doi.org/10.1016/j.jclepro.2021.127949

    Article  Google Scholar 

  59. Liang, B.; Chen, Y.; Lan, F.; Zheng, J.: Evaluation of rheological and aging behavior of modified asphalt based on activation energy of viscous flow. Constr. Build. Mater. 321, 126347 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126347

    Article  Google Scholar 

  60. Liu, J.; Sun, Y.; Wang, W.; Chen, J.: Using the viscoelastic parameters to estimate the glass transition temperature of asphalt binders. Constr. Build. Mater. 153, 908–917 (2017). https://doi.org/10.1016/j.conbuildmat.2017.07.120

    Article  Google Scholar 

  61. Yang, X.; Shen, A.; Su, Y.; Zhao, W.: Effects of alumina trihydrate (ATH) and organic montmorillonite (OMMT) on asphalt fume emission and flame retardancy properties of SBS-modified asphalt. Constr. Build. Mater. 236, 117576 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117576

    Article  Google Scholar 

  62. Jahromi, S.G.; Khodaii, A.: Effects of nanoclay on rheological properties of bitumen binder. Constr. Build. Mater. 23, 2894–2904 (2009). https://doi.org/10.1016/j.conbuildmat.2009.02.027

    Article  Google Scholar 

  63. Muhammad, J.; Peng, T.; Zhang, W.; Cheng, H.; Waqas, H.; Abdul, S.; Chen, K.; Zhou, Y.: Moisture susceptibility and fatigue performance of asphalt binder modified by bone glue and coal fly ash. Constr. Build. Mater. 308, 125135 (2021). https://doi.org/10.1016/j.conbuildmat.2021.125135

    Article  Google Scholar 

  64. Ameri, M.; Vamegh, M.; Rooholamini, H.; Haddadi, F.: Investigating effects of nano/SBR polymer on rutting performance of binder and asphalt mixture. Adv. Mater. Sci. Eng. 2018, 1–7 (2018). https://doi.org/10.1155/2018/5891963

    Article  Google Scholar 

  65. Li, L.; Yang, L.; Lin, Y.; Zhang, X.: A compressive review on high- and low-temperature performance of asphalt modified with nanomodifier. Adv. Mater. Sci. Eng. 2021, 1–19 (2021). https://doi.org/10.1155/2021/5525459

    Article  Google Scholar 

  66. Lv, X.; Fan, W.; Wang, J.; Liang, M.; Qian, C.; Luo, H.; Nan, G.; Yao, B.; Zhao, P.: Study on adhesion of asphalt using AFM tip modified with mineral particles. Constr. Build. Mater. 207, 422–430 (2019). https://doi.org/10.1016/j.conbuildmat.2019.02.115

    Article  Google Scholar 

  67. Lv, S.; Guo, Y.; Xia, C.; Liu, C.; Hu, L.; Guo, S.; Wang, X.; Borges Cabrera, M.; Li, M.: Investigation on high-temperature resistance to permanent deformation of waste leather modified asphalt. Constr. Build. Mater. 282, 122541 (2021). https://doi.org/10.1016/j.conbuildmat.2021.122541

    Article  Google Scholar 

  68. Loise, V.; Calandra, P.; Abe, A.A.; Porto, M.; Oliviero Rossi, C.; Davoli, M.; Caputo, P.: Additives on aged bitumens: What probe to distinguish between rejuvenating and fluxing effects? J. Mol. Liq. 339, 116742 (2021). https://doi.org/10.1016/j.molliq.2021.116742

    Article  Google Scholar 

  69. Patra, S.K.; Panda, M.; Das, A.K.; Bhuyan, P.K.: Performance evaluation of surface-treated montmorillonite nanoclay-modified bitumen binder at high- and intermediate-temperature conditions. Road Mater. Pavement Des. (2022). https://doi.org/10.1080/14680629.2022.2072374

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmet Münir Özdemir.

Ethics declarations

Conflict of interest

We declare that there is no potential conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yilmaz, B., Özdemir, A.M. & Gürbüz, H.E. Assessment of Thermal Properties of Nanoclay-Modified Bitumen. Arab J Sci Eng 48, 4595–4607 (2023). https://doi.org/10.1007/s13369-022-07142-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07142-4

Keywords

Navigation