Skip to main content
Log in

Frequency Spectrum and Damage Characteristics of Saturated and Dry Red Sandstone Subject to Shear Test

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The signal of acoustic emission (AE) captured during the sandstone shear failure is the key information to ascertain the damage degree (DD) of rock. To reveal the frequency spectrum and damage characteristics of saturated-and-dry red sandstone, the AE parameters of saturated-and-dry red sandstone such as cumulative energy, cumulative ring counts, the dominant and secondary frequencies (DSF) were analyzed during shear test by using AE monitoring technique. Results show that the shear damage stress of red sandstone is determined according to the cumulative energy and cumulative ring counts curves. The DD is expressed via cumulative ring counts and the relationship between DD and shear strain is established. DSF of red sandstone in saturated-and-dry state decrease when normal stress increases. The conclusion obtained in this study is of very important theoretical significance to determine shear DD of red sandstone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang, S.R.; Wu, X.G.; Yang, J.H.; Zhu, S.: Acoustic emission characteristics and dynamic damage constitutive relation of shale ceramsite concrete subjected to loading tests. J. Mater. Civil Eng. (2020). https://doi.org/10.1061/(ASCE)MT.1943-5533.0003276

    Article  Google Scholar 

  2. Wu, X.G.; Wang, S.R.; Yang, J.H.; Zhao, J.Q.; Chang, X.: Damage characteristics and constitutive model of lightweight shale ceramsite concrete under static-dynamic loading. Eng. Fract. Mech. (2022). https://doi.org/10.1016/j.engfracmech.2021.108137

    Article  Google Scholar 

  3. Jo, Y.; Chang, C.D.: Effect of host rock properties on shear behavior of discontinuities in sandstone. Int. J. Rock Mech. Min. Sci. 100, 238–249 (2017). https://doi.org/10.1016/j.ijrmms.2017.10.007

    Article  Google Scholar 

  4. Tang, S.B.; Yu, C.Y.; Heap, M.J.; Chen, P.Z.; Ren, Y.G.: The influence of water saturation on the short- and long-term mechanical behavior of red sandstone. Rock Mech. Rock Eng. 51, 2669–2687 (2018). https://doi.org/10.1007/s00603-018-1492-3

    Article  Google Scholar 

  5. Singh, H.K.; Basu, A.: Evalution of existing criterion in criteria in estimating shear strength of natural rock discontinuities. Eng. Geol. 323, 171–181 (2018). https://doi.org/10.1016/j.enggeo.2017.11.023

    Article  Google Scholar 

  6. Kim, T.; Jeon, S.: Experimental study on shear behavior of a rock discontinuity under various thermal, hydraulic and mechanical conditions. Rock Mech. Rock Eng. 52, 2207–2226 (2019). https://doi.org/10.1007/s00603-018-1723-7

    Article  Google Scholar 

  7. Liu, Y.; Cai, Y.; Huang, S.; Guo, Y.L.; Liu, G.F.: Effect of water saturation on uniaxial compressive strength and damage degree of clay-bearing sandstone under freeze-thaw. Bull. Eng. Geol. Env. 79, 2021–2036 (2020). https://doi.org/10.1007/s10064-019-01686-w

    Article  Google Scholar 

  8. Teng, T.; Gong, P.: Experimental and theoretical study on the compression characteristics of dry/water-saturated sandstone under different deformation rates. Arab. J. Geosci. (2020). https://doi.org/10.1007/s12517-020-05552-y

    Article  Google Scholar 

  9. Rabat, Á.; Cano, M.; Tomás, R.: Effect of water saturation on strength and deformability of building calcarenite stones: correlations with their physical properties. Constr. Build. Mater. (2020). https://doi.org/10.1016/j.conbuildmat.2019.117259

    Article  Google Scholar 

  10. Rabat, Á.; Tomás, R.; Cano, M.; Miranda, T.: Impact of water on peak and residual shear strength parameters and triaxial deformability of high-porosity building calcarenite stones: Interconnection with their physical and petrological characteristics. Constr. Build. Mater. (2020). https://doi.org/10.1016/j.conbuildmat.2020.120789

    Article  Google Scholar 

  11. Rabat, Á.; Cano, M.; Tomás, R.: Advances in the understanding of the role of degree of saturation and water distribution in mechanical behaviour of calcarenites using magnetic resonance imaging technique. Constr. Build. Mater. (2021). https://doi.org/10.1016/j.conbuildmat.2021.124420

    Article  Google Scholar 

  12. Mahanta, B.; Ranjith, P.G.; Vishal, V.; Singh, T.N.: Temperature-induced deformational responses and microstructural alteration of sandstone. J. Petrol. Sci. Eng. (2020). https://doi.org/10.1016/j.petrol.2020.107239

    Article  Google Scholar 

  13. Pirzada, M.A.; Roshan, H.; Sun, H.; Oh, J.; Andersen, M.S.; Hedaya, A.; Bahaaddini, M.: Effect of contact surface area on frictional behaviour of dry and saturated rock joints. J. Struct. Geol. (2020). https://doi.org/10.1016/j.jsg.2020.104044

    Article  Google Scholar 

  14. Moradian, Z.A.; Ballivy, G.; Rivard, P.; Gravel, C.; Rousseau, B.: Evaluating damage during shear tests of rock joints using acoustic emissions. Int. J. Rock Mech. Min. Sci. 47(4), 590–598 (2010). https://doi.org/10.1016/j.ijrmms.2010.01.004

    Article  Google Scholar 

  15. Zhao, Z.H.; Wang, W.M.; Wang, L.H.; Dai, C.Q.: Compression-shear strength criterion of coal-rock combination model considering interface effect. Tunn. Undergr. Space Technol. 47, 193–199 (2015). https://doi.org/10.1016/j.tust.2015.01.007

    Article  Google Scholar 

  16. Wang, G.; Zhang, Y.Z.; Jiang, Y.J.; Liu, P.X.; Guo, Y.S.; Liu, J.K.; Ma, M.; Wang, K.; Wang, S.G.: Shear behaviour and acoustic emission characteristics of bolted rock joints with diferent roughnesses. Rock Mech. Rock Eng. 51, 1885–1906 (2018). https://doi.org/10.1007/s00603-018-1438-9

    Article  Google Scholar 

  17. Thomas, B.; Murat, K.; Nguyen, G.D.; David, G.: Experimental study on the damage evolution of brittle rock under triaxial confinement with full circumferential strain control. Rock Mech. Rock Eng. 51, 3321–3341 (2018). https://doi.org/10.1007/s00603-018-1537-7

    Article  Google Scholar 

  18. Shi, G.C.; Yang, X.J.; Yu, H.C.; Zhu, C.: Acoustic emission characteristics of creep fracture evolution in double-fracture fine sandstone under uniaxial compression. Eng. Fract. Mech. 210, 13–28 (2019). https://doi.org/10.1016/j.engfracmech.2018.09.004

    Article  Google Scholar 

  19. Li, S.J.; Zhang, D.M.; Bai, X.; Zhang, X.M.; Chu, Y.P.; Guo, K.Y.: Experimental study on mechanical properties, acoustic emission energies and failure modes of pre-cracked rock materials under uniaxial compression. Pure Appl. Geophys. 176, 4519–4532 (2019). https://doi.org/10.1007/s00024-019-02201-8

    Article  Google Scholar 

  20. Ghasemi, S.; Khamehchiyan, M.; Taheri, A.; Nikudel, M.R.; Zalooli, A.: Crack evolution in damage stress thresholds in different minerals of granite rock. Rock Mech. Rock Eng. 53, 1163–1178 (2020). https://doi.org/10.1007/s00603-019-01964-9

    Article  Google Scholar 

  21. Saadat, M.; Taheri, A.: A cohesive grain based model to simulate shear behaviour of rock joints with asperity damage in polycrystalline rock. Comput. Geotech. (2020). https://doi.org/10.1016/j.compgeo.2019.103254

    Article  Google Scholar 

  22. Bost, M.; Mouzannar, H.; Rojat, F.; Coubard, G.; Rajot, J.P.: Metric scale study of the bonded concrete-rock interface shear behavior. KSCE J. Civ. Eng. 24(2), 390–403 (2020). https://doi.org/10.1007/s12205-019-0824-5

    Article  Google Scholar 

  23. Wang, Y.; Han, J.Q.; Li, C.H.: Acoustic emission and CT investigation on fracture evolution of granite containing two flaws subjected to freeze–thaw and cyclic uniaxial increasing-amplitude loading conditions. Constr. Build. Mater. (2020). https://doi.org/10.1016/j.conbuildmat.2020.119769

    Article  Google Scholar 

  24. Aker, E.; Kühn, D.; Vavryčuk, V.; Soldal, M.; Oye, V.: Experimental investigation of acoustic emissions and their moment tensors i n rock during failure. Int. J. Rock Mech. Min. Sci. 70, 286–295 (2014). https://doi.org/10.1016/j.ijrmms.2014.05.003

    Article  Google Scholar 

  25. Mpalaskas, A.C.; Matikas, T.E.; Hemelrijck, D.V.; Papakitsos, G.S.; Aggelis, D.G.: Acoustic emission monitoring of granite under bending and shear loading. Arch. Civil Mech. Eng. 16, 313–324 (2016). https://doi.org/10.1016/j.acme.2016.01.006

    Article  Google Scholar 

  26. Moradian, Z.; Einstein, H.H.; Ballivy, G.: Detection of cracking levels in brittle rocks by parametric analysis of the acoustic emission signals. Rock Mech. Rock Eng. 49, 785–800 (2016). https://doi.org/10.1007/s00603-015-0775-1

    Article  Google Scholar 

  27. Srinivasan, V.; Tripathy, A.; Gupta, T.; Singh, T.N.: An investigation on the influence of thermal damage on the physical, mechanical and acoustic behavior of indian Gondwana shale. Rock Mech. Rock Eng. 53, 2865–2885 (2020). https://doi.org/10.1007/s00603-020-02087-2

    Article  Google Scholar 

  28. Rodríguez, P.; Celestino, T.B.: Application of acoustic emission monitoring and signal analysis to the qualitative and quantitative characterization of the fracturing process in rocks. Eng. Fract. Mech. 210, 54–69 (2019). https://doi.org/10.1016/j.engfracmech.2018.06.027

    Article  Google Scholar 

  29. Shkuratnik, V.L.; Kravchenko, O.S.; Filimonov, Y.L.: Stresses and temperature affecting acoustic emission and rheological characteristics of rock salt. J. Min. Sci. 55, 531–537 (2019). https://doi.org/10.1134/S1062739119045879

    Article  Google Scholar 

  30. Liu, X.X.; Wu, L.X.; Zhang, Y.B.; Liang, Z.Z.; Yao, X.L.; Liang, P.: Frequency properties of acoustic emissions from the dry and saturated rock. Environ. Earth Sci. (2019). https://doi.org/10.1007/s12665-019-8058-x

    Article  Google Scholar 

  31. Zhang, Y.C.; Jiang, Y.J.; Asahina, D.; Wang, C.S.: Experimental and numerical investigation on shear failure behavior of rock-like samples containing multiple non-persistent joints. Rock Mech. Rock Eng. 53, 4711–4744 (2020). https://doi.org/10.1007/s00603-020-02186-0

    Article  Google Scholar 

  32. Barile, C.; Casavola, C.; Pappalettera, G.; Kannan, V.P.: Application of different acoustic emission descriptors in damage assessment of fiber reinforced plastics: a comprehensive review. Eng. Fract. Mech. (2020). https://doi.org/10.1016/j.engfracmech.2020.107083

    Article  Google Scholar 

  33. Zhang, Y.B.; Wu, W.R.; Yao, X.L.; Liang, P.; Sun, L.; Liu, X.X.: Study on spectrum characteristics and clustering of acoustic emission signals from rock fracture. Circuits Syst. Signal Process. 39, 1133–1145 (2020). https://doi.org/10.1007/s00034-019-01168-0

    Article  Google Scholar 

  34. Brown, E.T.: Rock characterization, testing and monitoring: ISRM suggested methods. Pergamon Press, Oxford (1981)

    Google Scholar 

  35. Wang, S.R.; Zhao, Y.H.; Zou, Z.S.; Jia, H.H.: Experimental research on energy release characteristics of water-bearing sandstone alongshore wharf. Pol. Marit. Res. 24, 147–153 (2017). https://doi.org/10.1515/pomr-2017-0077

    Article  Google Scholar 

  36. Zhu, T.T.; Huang, D.: Experimental investigation of the shear mechanical behavior of sandstone under unloading normal stress. Int. J. Rock Mech. Min. Sci. 114, 186–194 (2019). https://doi.org/10.1016/j.ijrmms.2019.01.003

    Article  Google Scholar 

  37. Kachanov, L.M.: Rupture time under creep conditions. Int. J. Fract. 97, 11–18 (1999). https://doi.org/10.1023/A:1018671022008

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (U1810203; U1604142; 51774112). The Fundamental Research Funds for the Universities of Henan Province (NSFRF200202), and the Key Research Project of Colleges and Universities in Henan Province (21A440011), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuren Wang.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, S., Cui, F. et al. Frequency Spectrum and Damage Characteristics of Saturated and Dry Red Sandstone Subject to Shear Test. Arab J Sci Eng 48, 4609–4618 (2023). https://doi.org/10.1007/s13369-022-07135-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07135-3

Keywords

Navigation