Skip to main content

Advertisement

Log in

Annealing Temperature Effect on Structural, Magnetic Properties and Methyl Green Degradation of Fe2O3 Nanostructures

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, hematite (α-Fe2O3) nanoparticles were prepared at two different temperatures (500 and 600 °C) by one-step direct thermal decomposition of Fe(NO3)2·6H2O at the presence of urea (1:1 weight ratio). The products were named as Fe-1 and Fe-2 and characterized by X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and transmission electron microscopy (TEM). The photocatalytic activities of the products were studied by degradation of methyl green (MG) dye in aqueous solution at room temperature. According to the XRD results, the average size of crystallites Fe-2 is 110 nm. The applied method is fast, facile and does not use any solvents. The magnetic properties show that the saturation magnetization of Fe-2 (≈ 0.9 emu/g) is higher than that of Fe-1 (≈ 0.6 emu/g) which confirms the higher purity of α-phase of Fe-2. In addition, the products were used for the degradation of MG from aqueous solution. The influence of various parameters such as contact time and mass of the α-Fe2O3 nanoparticles has been studied. The photocatalytic results predict that the as-prepared hematite (α-Fe2O3) nanoparticles have potential to be used as an efficient degradation agent of MG and other cationic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu, D.; Liu, J.; Ma, T.; Zhao, X.; Ma, H.; Li, J.: Coupling of sponge fillers and two-zone clarifiers for granular sludge in an integrated oxidation ditch. Environ. Technol. Innov. 26, 102264 (2022)

    Article  Google Scholar 

  2. Guo, C.; Zhang, Z.; Wu, Y.; Wang, Y.; Ma, G.; Shi, J.; Zhao, Y.: Synergic realization of electrical insulation and mechanical strength in liquid nitrogen for high-temperature superconducting tapes with ultra-thin acrylic resin coating. Superconduct. Sci. Technol. 35, 075014 (2022)

    Article  Google Scholar 

  3. Hu, M.; Wang, Y.; Yan, Z.; Zhao, G.; Zhao, Y.; Xia, L.; Zhuang, X.: Hierarchical dual-nanonet of polymer nanofibers and supramolecular nanofibrils for air filtration with a high filtration efficiency, low air resistance and high moisture permeation. J. Mater. Chem. A. Mater. Energy Sustain. 9, 14093–14100 (2021)

    Article  Google Scholar 

  4. Hou, C.; Yin, M.; Lan, P.; Wang, H.; Nie, H.; Ji, X.: Recent progress in the research of Angelica sinensis (Oliv.) Diels polysaccharides: extraction, purification, structure and bioactivities. Chem. Biol. Technol. Agricul. 8, 1–14 (2021)

    Google Scholar 

  5. Xiong, Q.; Chen, Z.; Huang, J.; Zhang, M.; Song, H.; Hou, X.; Feng, Z.: Preparation, structure and mechanical properties of Sialon ceramics by transition metal-catalyzed nitriding reaction. Rare Met. 39, 589–596 (2020)

    Article  Google Scholar 

  6. Fu, Y.; Chen, H.; Guo, R.; Huang, Y.; Toroghinejad, M.R.: Extraordinary strength-ductility in gradient amorphous structured Zr-based alloy. J. All. Comp. 888, 161507 (2021)

    Article  Google Scholar 

  7. Wang, G.; Liu, D.; Fan, S.; Li, Z.; Su, J.: High-k erbium oxide film prepared by sol-gel method for low-voltage thin-film transistor. Nanotechnol. 32, 215202 (2021)

    Article  Google Scholar 

  8. Yan, W.; Cao, M.; Fan, S.; Liu, X.; Liu, T.; Li, H.; Su, J.: Multi-yolk ZnSe/2(CoSe2)@NC heterostructures confined in N-doped carbon shell for high-efficient sodium-ion storage. Compos. B Eng. 213, 108732 (2021)

    Article  Google Scholar 

  9. Khalaji, A.D.; Pazhand, Z.; Kiani, K.; Machek, P.; Jarosova, M.; Mazandarani, R.: CuO nanoparticles: preparation, characterization, optical properties, and antibacterial activities. J. Mater. Sci: Mater. Electron. 31, 11949–11954 (2020)

    Google Scholar 

  10. Bai, Z.; Zhang, X.; Zhang, Y.; Guo, C.; Tang, B.: Facile synthesis of mesoporous Mn3O4 nanorods as a promising anode material for high performance lithium-ion batteries. J. Mater. Chem. A 2, 16755–16760 (2014)

    Article  Google Scholar 

  11. Khalaji, A.D.; Jarosova, M.; Machek, P.; Chen, K.; Xue, D.: Facile synthesis, characterization and electrochemical performance of nickel oxide nanoparticles prepared by thermal decomposition. Scripta Mater. 181, 53–57 (2020)

    Article  Google Scholar 

  12. Khalaji, A.D.; Jarosova, M.; Machek, P.; Chen, K.; Xue, D.: Co3O4 Nanoparticles: synthesis, characterization and its application as performing anode in Li-Ion batteries. J. Nanostruct. 10, 607–612 (2020)

    Google Scholar 

  13. Pushpanathan, V.; Suresh Kumar, D.: A novel zinc(II) macrocycle-based synthesis of pure ZnO nanoparticles. J. Nanostruct. Chem. 4, 95–101 (2014)

    Article  Google Scholar 

  14. Yan, W.; Liang, K.; Chi, Z.; Liu, T.; Cao, M.; Fan, S.; Su, J.: Litchi-like structured MnCo2S4@C as a high capacity and long-cycling time anode for lithium-ion batteries. Electrochim. Acta 376, 138035 (2021)

    Article  Google Scholar 

  15. Lu, T.; Yan, W.; Feng, G.; Luo, X.; Hu, Y.; Guo, J.; Ding, S.: Singlet oxygen-promoted one-pot synthesis of highly ordered mesoporous silica materials via the radical route. Green Chem. (2022). https://doi.org/10.1039/D2GC00869F

    Article  Google Scholar 

  16. Zhou, J.; He, Y.; Shen, J.; Essa, F.A.; Yu, J.: Ni/Ni3Al interface-dominated nanoindentation deformation and pop-in events. Nanotechnol. 33, 105703 (2021)

    Article  Google Scholar 

  17. Zhang, Y.; Nan, L.I.; Li, C.; Huang, C.; Ali, H.M.; Xu, X.; Mao, C.; Ding, W.; Cui, X.; Yang, M.; Yu, T.; Jamil, M.; Gupta, M.K.; Jia, D.; Said, Z.: Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms. Friction 10, 803–841 (2022)

    Article  Google Scholar 

  18. Liu, M.; Li, C.; Zhang, Y.; An, Q.; Yang, M.; Gao, T.; Mao, C.; Liu, B.; Cao, H.; Xu, X.; Said, Z.; Debnath, S.; Jamil, M.; Ali, H.M.; Sharma, S.: Cryogenic minimum quantity lubrication machining: from mechanism to application. Front. Mech. Eng. 16, 649–697 (2021)

    Article  Google Scholar 

  19. Sharma, S.; Dhiman, N.; Kumar, A.; Singh, M.; Dhiman, P.: Effect of synthesis on optical and magnetic properties of Fe2O3 nanoparticles. Integ. Ferroelect. 204, 38–46 (2020)

    Article  Google Scholar 

  20. . Rahman, G., Najaf, Z., ul Haq Ali Shah, A., Mian, S.A.: Investigation of the structural, optical and photoelectrochemical properties of α-Fe2O3 nanorods synthesized via a facile chemical bath deposition. Optik 200:163454 (2020).

  21. Al-Douri, Y.; Amrane, N.; Johan, M.R.: Annealing temperature effect on structural and optical investigations of Fe2O3 nanostructure. J. Mater. Res. Technol. 8, 2164–2169 (2019)

    Article  Google Scholar 

  22. Mazrouaa, A.M.; Mohamed, M.G.; Fekry, M.: Physical and magnetic properties of iron oxide nanoparticles with a different molar ratio of ferrous and ferric. Egypt. J. Petrol. 28, 165–171 (2019)

    Article  Google Scholar 

  23. Lassoued, A.; Lassoued, M.S.; Dkhil, B.; Ammar, A.; Gadri, A.: Synthesis, photoluminescence and magnetic properties of iron oxide (Fe2O3) nanoparticles through precipitation or hydrothermal methods. Phys. E. 101, 212–219 (2018)

    Article  Google Scholar 

  24. Jamzad, M.; Karimi Bidkorpeh, M.: Green synthesis of iron oxide nanoparticles by the aqueous extract of Laurus nobilis L. leaves and evaluation of the antimicrobial activity. J. Nanostruct. Chem. 10, 193–201 (2020)

    Article  Google Scholar 

  25. Raham, G.; Joo, O.S.: Facile preparation of nanostructured α-Fe2O3 thin films with enhanced photoelectrochemical water splitting activity. J. Mater. Chem. A 1, 5554–5561 (2013)

    Article  Google Scholar 

  26. Li, Z.; Mao, Y.; Tian, Q.; Zhang, W.; Yang, L.: Extremely facile preparation of high-performance Fe2O3 anode for lithium-ion batteries. J. All. Compd. 784, 125–133 (2019)

    Article  Google Scholar 

  27. Al-Atta, A.; Sher, F.; Hazafa, A.; Zafar, A.; Iqbal, H.M.N.; Karahmet, E.; Lester, E.: Supercritical water oxidation of phenol and process enhancement with in situ formed Fe2O3 nano catalyst. Environ. Sci. Pull. Res. (2021). https://doi.org/10.1007/s11356-021-16390-0

    Article  Google Scholar 

  28. Fu, C.; Mahadevegowda, A.; Grant, P.S.: Production of hollow and porous Fe2O3 from industrial mill scale and its potential for large-scale electrochemical energy storage applications. J. Mater. Chem. A 4, 2597–2604 (2016)

    Article  Google Scholar 

  29. Wang, Y.; Mao, P.; Yan, F.; Gao, C.; Liu, Y.; Ding, J.; Wu, W.; Liu, Y.: Flower-like Fe2O3/reduced graphene oxide composite for electrochemical energy storage. Synth. Met. 222, 198–204 (2016)

    Article  Google Scholar 

  30. Hung, C.M.; Hoa, N.D.; Duy, N.V.; Toan, N.V.; Le, D.T.T.; Hieu, N.V.: Synthesis and gas-sensing characteristics of α-Fe2O3 hollow balls. J. Sci: Adv. Mater. Dev. 1, 45–50 (2016)

    Google Scholar 

  31. Mirzaei, A.; Hashemi, B.; Janghorban, K.: α-Fe2O3 based nanomaterials as gas sensors. J. Mater. Sci: Mater. Electron. 27, 3109–3144 (2016)

    Google Scholar 

  32. Shahriai, T.; Mehrdadi, N.; Tahmasebi, M.: Study of cadmium and nickel removal from battery industry wastewater by Fe2O3 nanoparticles. Pollution 5, 515–524 (2019)

    Google Scholar 

  33. Tamez, C.; Hernandez, R.; Parsons, J.G.: Removal of Cu(II) and Pb(II) from aqueous solution using engineered iron oxide nanoparticles. Microchem. J. 125, 97–104 (2016)

    Article  Google Scholar 

  34. Jerin, V.M.; Remya, R.; Mariyam, T.; Varkey, J.T.: Investigation of the removal of toxic chromium ion from waste water using Fe2O3 nanoparticles. Mater. Today: Proceed. 9, 27–31 (2019)

    Google Scholar 

  35. Gandha, K.; Mohapatra, J.; Kabir Hossain, M.; Elkins, K.; Poudyal, N.; Rajeshwar, K.; Liu, J.P.: Mesoporous iron oxide nanowires: synthesis, magnetic and photocatalytic properties. RSC Adv. 6, 90537–90546 (2016)

    Article  Google Scholar 

  36. Ye, C.; Hu, K.; Niu, Z.; Lu, Y.; Zhang, L.; Yan, K.: Controllable synthesis of rhombohedral α-Fe2O3 efficient for photocatalytic degradation of bisphenol A. J. Water Process. 27, 205–210 (2019)

    Article  Google Scholar 

  37. Kusior, A.; Michalec, K.; Jelen, P.; Radecka, M.: Shaped Fe2O3 nanoparticles – synthesis and enhanced photocatalytic degradation towards RhB. Appl. Surf. Sci. 476, 342–352 (2019)

    Article  Google Scholar 

  38. Taghavi Fardood, S.; Moradnia, F.; Moradi, S.; Forootan, R.; Yekke Zare, F.; Heidari, M.: Eco-friendly synthesis and characterization of α-Fe2O3 nanoparticles and study of their photocatalytic activity for degradation of congo red dye. Nanochem. Res. 4, 140–147 (2019)

    Google Scholar 

  39. Wang, J.; Shao, X.; Zhang, Q.; Tian, G.; Ji, X.; Bao, W.: Preparation of mesoporous magnetic Fe2O3 nanoparticles and its application for organic dyes removal. J. Mol. Liq. 248, 13–18 (2017)

    Article  Google Scholar 

  40. Dissanayale, D.M.S.N.; Mantilaka, M.M.M.G.P.G.; Palihawadana, T.C.; Chandrakumara, G.T.D.; De Silva, R.T.; Pitawala, H.M.T.G.A.; Nalin de Silva, K.M.; Amaratunga, G.A.H.: Facile and low-cost synthesis of pure hematite (α-Fe2O3) nanoparticles from naturally occurring laterites and their superior adsorption capability towards acid-dyes. RSC Adv. 9, 21249–21257 (2019)

    Article  Google Scholar 

  41. Debnath, A.; Deb, K.; Chattopadhyay, K.K.; Saha, B.: Methyl orange adsorption onto simple chemical route synthesized crystalline α-Fe2O3 nanoparticles: kinetic, equilibrium isotherm, and neural network modeling. Desal. Water Treat. 57, 13549–13560 (2016)

    Article  Google Scholar 

  42. Cao, Y.; Alamri, S.; Rajhi, A.A.; Anqi, A.E.; Khalaji, A.D.: New chitosan Schiff base and its nanocomposite: removal of methyl green from aqueous solution and its antibacterial activities. Int. J. Biol. Macromol. 192, 1–6 (2021)

    Article  Google Scholar 

  43. Foroughnia, A.; Khalaji, A.D.; Kolvari, E.; Koukabi, N.: Synthesis of new chitosan Schiff base and its Fe2O3 nanocomposite: evaluation of methyl orange removal and antibacterial activity. Int. J. Biol. Macromol. 177, 83–91 (2021)

    Article  Google Scholar 

  44. Cinar, S.; Kaynar, U.H.; Aydemir, T.; Kaynar, S.C.; Ayvacikli, M.: An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/chitosan composite beads. Int. J. Biol. Macromol. 96, 459–465 (2017)

    Article  Google Scholar 

  45. Farghali, A.A.; Bahgat, M.; El Rouby, W.M.A.; Khedr, M.H.: Preparation, decoration and characterization of graphene sheets for methyl green adsorption. J. Alloys Compd. 555, 193–200 (2013)

    Article  Google Scholar 

  46. Bahgat, M.; Farghali, A.A.; El Rouby, W.; Khedr, M.; Mohassab-Ahmed, M.Y.: Adsorption of methyl green dye onto multi-walled carbon nanotubes decorated with Ni nanoferrite. Appl. Nanosci. 3, 251–261 (2013)

    Article  Google Scholar 

  47. Bashandeh, Z.; Khalaji, A.D.: An efficient removal of methyl green dye by adsorption onto new modified chitosan Schiff base. Asian J. Nanosci. Mater. 4, 274–281 (2021)

    Google Scholar 

  48. Rida, K.; Chaibeddra, K.; Cheraitia, K.: Adsorption of cationic dye methyl green from aqueous solution onto activated carbon prepared from BrachychitonPopulneus fruit shell. Ind. J. Chem. Technol. 27, 51–59 (2020)

    Google Scholar 

  49. Sharma, P.; Saikia, B.K.; Dasa, M.R.: Removal of methyl green dye molecule from aqueous system using reduced graphene oxide as an efficient adsorbent: kinetics, isotherm and thermodynamic parameters Ponchami. Coll. Surf. A: Physicochem. Eng. Aspects 457, 125–133 (2014)

    Article  Google Scholar 

  50. Bashandeh, Z.; Khalaji, A.D.: Effective removal of methyl green from aqueous solution using epichlorohydrine cross-linked chitosan. Adv. J. Chem. A 4, 270–277 (2021)

    Google Scholar 

  51. Abbas, M.; Aksil, T.; Trari, M.: Removal of toxic methyl green (MG) in aqueous solutions by apricot stone activated carbon – equilibrium and isotherms modeling. Desalin. Water Treat. 125, 93–101 (2018)

    Article  Google Scholar 

  52. Mahmoud, N.M.R.; El-Moselhy, M.M.; Alkhaldi, M.A.: Remediation of methyl green dye from aqueous solution via adsorption and degradation using silica gel modified with hydrated zinc oxide catalyst. Desalin. and Water Treat. 158, 385–397 (2019)

    Article  Google Scholar 

  53. Ansari, M.J.; Jasim, S.A.; Bokov, D.O.; Thangavelu, L.; Yasin, G.; Khalaji, A.D.: Preparation of new bio-based chitosan/Fe2O3/NiFe2O4 as an efficient removal of methyl green from aqueous solution. Int. J. Biol. Macromol. 198, 128–134 (2022)

    Article  Google Scholar 

  54. Hadjltaief, H.B.; Zina, M.B.; Galvez, M.E.; Da Costa, P.: Photocatalytic degradation of methyl green dye in aqueous solution over natural clay-supported ZnO–TiO2 catalysts. J. Photochem. Photobiol. A: Chem. 315, 25–33 (2016)

    Article  Google Scholar 

  55. Mai, F.D.; Chen, C.C.; Chen, J.L.; Liu, S.C.: Photodegradation of methyl green using visible irradiation in ZnO suspensions determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography–photodiode array-electrospray ionization-mass spectrometry method. J. Chromatogr. A. 1189, 355–365 (2008)

    Article  Google Scholar 

  56. Nezamzadeh-Ejhieh, A.; Shams-Ghahfarokhi, Z.: Photodegradation of methyl green by nickel-dimethylglyoxime/ZSM-5 zeolite as a heterogeneous catalyst. J. Chem. Article ID 104093, 11 pages (2013).

  57. Kumar, A.; Pandey, G.: The photocatalytic degradation of methyl green in presence of visible light with photoactive Ni0.1:La0.05:TiO2 nanocomposites. IOSR J. Appl. Chem. 10, 31–44 (2017)

    Google Scholar 

  58. Liu, J.; Yang, H.; Xue, X.: Preparation of different shaped α-Fe2O3 nanoparticles with large particle of iron oxide red. CrystEngComm 21, 1097–1101 (2019)

    Article  Google Scholar 

  59. Khalaji, A.D.; Mousavia, S.M.; Jarosova, M.; Machek, P.: The effect of calcination temperature on the morphology, size and the crystalline phase of the as-synthesized products by direct calcination of FeSO4 at the presence of benzoic acid. J. Surf. Invest: X-ray Synch. Neut. Tech. 14, 1191–1194 (2020)

    Article  Google Scholar 

  60. Khalaji, A.D.; Ghorbani, M.: Thermal studies of iron (II) Schiff base complexes: new precursors for preparation of α-Fe2O3 nanoparticles via solid-state thermal decomposition. Chem. Method. 4, 532–542 (2020)

    Article  Google Scholar 

  61. Ahmadzadeh, M.; Romero, C.; McCloy, J.: Magnetic analysis of commercial hematite, magnetite, and their mixtures. AIP Adv. 8, 056807 (2021)

    Article  Google Scholar 

  62. Ahmad, T.; Iqbal, J.; Bustam, M.A.; Zulfiqar, M.; Muhammad, N.; Al Hajeri, B.M.; Irfan, M.; Anwaar Asghar, H.M.; Ullah, S.: Phytosynthesis of cerium oxide nanoparticles and investigation of their photocatalytic potential for degradation of phenol under visible light. J. Mol. Struct. 1217, 128292 (2020)

    Article  Google Scholar 

  63. Majumder, D.; Chakraborty, I.; Mandal, K.; Roy, S.: Facet-dependent photodegradation of methylene blue using pristine CeO2 nanostructures. ACS Omega 4, 4243–4251 (2019)

    Article  Google Scholar 

  64. Lassoued, A.; Lassoued, M.S.; Dkhil, B.; Ammar, S.; Gadri, A.: Nanocrystalline NixCo(0.5-x)Zn0.5Fe2O4 ferrite: fabrication through co-precipitation route with enhanced structural, magnetic and photocatalytic activity. J. Mater. Sci: Mater. Electron. 29, 7333–7344 (2018)

    Google Scholar 

  65. Lassoued, A.; Lassoued, M.S.; Dkhil, B.; Ammar, S.; Gadri, A.: Photocatalytic degradation of methyl orange dye by NiFe2O4 nanoparticles under visible irradiation: effect of varying the synthesis temperature. J. Mater. Sci: Mater. Electron. 29, 7057–7067 (2018)

    Google Scholar 

  66. Yuvaraja, G.; Chen, D.Y.; Pathak, J.L.; Long, J.; Subbaiah, M.V.; Wen, J.C.; Pan, C.L.: Preparation of novel aminated chitosan schiff’s base derivative for the removal of methyl orange dye from aqueous environment and its biological applications. Int. J. Biol. Macromol. 146, 1100–1110 (2020)

    Article  Google Scholar 

  67. Parshi, N.; Pan, D.; Dhavle, V.; Jana, B.; Maity, S.; Ganguly, J.: Fabrication of lightweight and reusable salicylaldehyde functionalized chitosan as adsorbent for dye removal and its mechanism. Int. J. Biol. Macromol. 141, 626–635 (2019)

    Article  Google Scholar 

  68. Zhai, L.; Bai, Z.; Zhu, Y.; Wang, B.; Luo, W.: Fabrication of chitosan microspheres for efficient adsorption of methyl orange. Chin. J. Chem. Eng. 26, 657–666 (2018)

    Article  Google Scholar 

  69. Moghaddam, A.Z.; Ghiamati, E.; Pourashuri, A.; Allahresani, A.: Modified nickel ferrite nanocomposite/functionalized chitosan as a novel adsorbent for the removal of acidic dyes. Int. J. Biol. Macromol. 120, 1714–1725 (2018)

    Article  Google Scholar 

  70. Anitha, T.; Senthil Kumar, P.; Sathish Kumar, K.: Synthesis of nano-sized chitosan blended polyvinyl alcohol for the removal of Eosin Yellow dye from aqueous solution. J. Water Process Eng. 13, 127–136 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ghassan Fadhil Smaisim or Mustafa M. Kadhim.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brontowiyono, W., AbdulHussein, W.A., Smaisim, G.F. et al. Annealing Temperature Effect on Structural, Magnetic Properties and Methyl Green Degradation of Fe2O3 Nanostructures. Arab J Sci Eng 48, 375–382 (2023). https://doi.org/10.1007/s13369-022-07118-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07118-4

Keywords

Navigation