Skip to main content

Advertisement

Log in

Predictive Modeling of Surface Roughness and Feed Force in Al-50wt% Si Alloy Milling Based on Response Surface Method and Various Optimal Algorithms

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Al-50wt% Si alloy is considered as a difficult-to-machine material and is lack of precision machining research. In this paper, the response surface methodology (RSM), artificial neural network (ANN) and genetic algorithm (GA) are coupled to determine the optimum cutting conditions leading to the minimum surface roughness Ra and feed force Ft in Al-50wt% Si alloy precision milling. The purpose is to address the problem of machining parameters optimization in precision milling high Si-Al alloy. The Ra and Ft were considered as two process responses and cutting speed (vc), feed per tooth (fz), radial cutting depth (ae) and axial cutting depth (ap) were the process parameters. Using the rotatable orthogonal central composite design, 31 experiments were conducted. Based on RSM and analysis of variance (ANOVA), the influence of milling parameters on Ra and Ft was studied. The ANN was also employed for developing Ra and Ft predictive models, and its predictive capability was more accurate compared with RSM. Parameter optimizations were performed for minimizing Ra and Ft in single-objective and multi-objective cases using GA. In multi-objective optimization, the entropy weight method (EWM) was also implemented. Finally, the optimal parameter combination for precision milling Al-50wt% Si alloy was obtained as vc = 105 m/min, fz = 0.013 mm/z, ae = 3.909 mm and ap = 0.14 mm. The prediction errors were found as 3.27% and 4.65% for Ra and Ft, respectively. The results showed the effectiveness of the predictive model and the optimization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

The data and material in this paper are original, available and objective.

Code availability

Not applicable.

References

  1. Sun, W.; Duan, C.Z.; Yin, W.D.: Chip formation mechanism in machining of Al/SiCp composites based on analysis of particle damage. J. Manuf. Process. 64, 861–877 (2021). https://doi.org/10.1016/j.jmapro.2021.02.032

    Article  Google Scholar 

  2. Niu, Q.; Jing, L.; Li, C.; Yu, Z.; Yue, W.: Study on effects of tool nose radius on the formation mechanism of edge defects during milling SiCp/Al composites. Int. J. Adv. Manuf. Tech. 114, 2261–2269 (2021). https://doi.org/10.1007/s00170-021-07018-1

    Article  Google Scholar 

  3. Fan, Y.; Xu, Y.; Hao, Z.; Lin, J.: Cutting deformation mechanism of SiCp/Al composites based on strain gradient theory. J. Mater. Process. Tech. 299, 117345 (2021). https://doi.org/10.1016/j.jmatprotec.2021.117345

    Article  Google Scholar 

  4. Yu, K.; Li, C.; Wang, R.; Yang, J.: Production and properties of a spray formed 70% Si-Al alloy for electronic packaging applications. Mater. Trans. 49, 685–687 (2008). https://doi.org/10.2320/matertrans.MRP2007630

    Article  Google Scholar 

  5. Jcw, A.; Sc, A.; Tjk, A.; Ms, B.; Atc, B.: Influence of contact area on the sliding friction and wear behaviour of an electrochemical jet textured Al-Si alloy. Wear 426–427, 1336–1344 (2019). https://doi.org/10.1016/j.wear.2019.01.008

    Article  Google Scholar 

  6. Muratoğlu, M.; Yilmaz, O.; Aksoy, M.: Investigation on diffusion bonding characteristics of aluminum metal matrix composites (Al/SiCp) with pure aluminum for different heat treatments. J. Mater. Process. Tech. 178, 211–217 (2006). https://doi.org/10.1016/j.jmatprotec.2006.03.168

    Article  Google Scholar 

  7. Kulisz, M.; Zagórski, I.; Korpysa, J.: The effect of abrasive waterjet machining parameters on the condition of Al-Si alloy. Materials 13, 3122 (2020). https://doi.org/10.3390/ma13143122

    Article  Google Scholar 

  8. Zhou, Y.; Sun, H.; Li, A.; Lv, M.; Zhao, J.: FEM simulation-based cutting parameters optimization in machining aluminum-silicon piston alloy ZL109 with PCD tool. J. Mech. Sci. Technol. 33, 3457–3465 (2019). https://doi.org/10.1007/s12206-019-0640-3

    Article  Google Scholar 

  9. Niu, Z.; Cheng, K.: Improved dynamic cutting force modelling in micro milling of metal matrix composites Part I: Theoretical model and simulations. P. I. Mech. Eng. C-J. Mec. 234, 1733–1745 (2020). https://doi.org/10.1177/0954406219899688

    Article  Google Scholar 

  10. Ononiwu, N.H.; Ozoegwu, C.G.; Madushele, N.; Akinlabi, E.T.: Characterization, machinability studies, and multi-response optimization of AA 6082 hybrid metal matrix composite. Int. J. Adv. Manuf. Tech., 1–19 (2021). https://doi.org/10.1007/s00170-021-07549-7

  11. Naresh, N.; Jenarthanan, M.P.; Prakash, R.H.: Multi-objective optimisation of CNC milling process using Grey-Taguchi method in machining of GFRP composites. Multidiscip. Model. Mater. Struct. 10, 265–275 (2014). https://doi.org/10.1108/MMMS-06-2013-0042

    Article  Google Scholar 

  12. Kumar, S.L.: Measurement and uncertainty analysis of surface roughness and material removal rate in micro turning operation and process parameters optimization. Measurement 140, 538–547 (2019). https://doi.org/10.1016/j.measurement.2019.04.029

    Article  Google Scholar 

  13. Uzun, M.; Usca, S.A.; Kuntolu, M.; Gupta, M.K.: Influence of tool path strategies on machining time, tool wear, and surface roughness during milling of AISI X210Cr12 steel. Int. J. Adv. Manuf. Tech. 119, 2709–2720 (2022). https://doi.org/10.1007/s00170-021-08365-9

    Article  Google Scholar 

  14. Dang, J.; Zhang, H.; An, Q.; Ming, W.; Chen, M.: On the microstructural evolution pattern of 300M steel subjected to surface cryogenic grinding treatment. J. Manuf. Process. 68, 169–185 (2021). https://doi.org/10.1016/j.jmapro.2021.05.026

    Article  Google Scholar 

  15. Singh, D.; Chadha, V.; Msingari, R.: Effect of nose radius on surface roughness during CNC turning using response surface methodology. Int. J. Recent Adv. Mech. Eng. 5, 31–45 (2016). https://doi.org/10.14810/ijmech.2016.5203

  16. Kumar, R.; Chauhan, S.: Study on surface roughness measurement for turning of Al 7075/10/SiCp and Al 7075 hybrid composites by using response surface methodology (RSM) and artificial neural networking (ANN). Measurement 65, 166–180 (2015). https://doi.org/10.1016/j.measurement.2015.01.003

    Article  Google Scholar 

  17. Chandrasekaran, M.; Devarasiddappa, D.: Development of predictive model for surface roughness in end milling of Al-SiCp metal matrix composites using fuzzy logic. World Acad. Sci. Eng. Technol. 6, 928–933 (2012). https://www.researchgate.net/publication/265603018

  18. Rajmohan, T.; Palanikumar, K.: Modeling and analysis of performances in drilling hybrid metal matrix composites using D-optimal design. Int. J. Adv. Manuf. Tech. 64, 1249–1261 (2013). https://doi.org/10.1007/s00170-012-4083-6

    Article  Google Scholar 

  19. Pare, V.; Agnihotri, G.; Krishna, C.: Selection of optimum process parameters in high speed CNC end-milling of composite materials using meta heuristic techniques-A comparative study. Strojniški vestnik. J. Mech. Eng. 61, 176–186 (2015). https://doi.org/10.5545/sv-jme.2014.1914

    Article  Google Scholar 

  20. Zhu, C.; Gu, P.; Wu, Y.; Liu, D.; Wang, X.: Surface roughness prediction model of SiCp/Al composite in grinding. Int. J. Mech. Sci. 155, 98–109 (2019). https://doi.org/10.1016/j.ijmecsci.2019.02.025

    Article  Google Scholar 

  21. Mia, M.; Gupta, M.K.; Lozano, J.A.; Carou, D.; Pimenov, D.Y.; Królczyk, G.; Khan, A.M.; Dhar, N.R.: Multi-objective optimization and life cycle assessment of eco-friendly cryogenic N2 assisted turning of Ti-6Al-4V. J. Clean. Prod. (2018). https://doi.org/10.1016/j.jclepro.2018.10.334

    Article  Google Scholar 

  22. Bhattacharya, S.; Das, P.P.; Chatterjee, P.; Chakraborty, S.: Prediction of responses in a sustainable dry turning operation: A comparative analysis. Math. Probl. Eng. 9967970 (2021). https://doi.org/10.1155/2021/9967970

  23. Das, P.P.; Das, S.; Mahto, P.K.; Kumar, D.; Roy, M.K.: ANFIS-based models for coating quality prediction for thin-film deposition processes. J. Multiscale. Model. 12, 2150007 (2021). https://doi.org/10.1142/S1756973721500074

    Article  Google Scholar 

  24. Tamang, S.K.; Chandrasekaran, M.: Modeling and optimization of parameters for minimizing surface roughness and tool wear in turning Al/SiCp MMC, using conventional and soft computing techniques. Adv. Prod. Eng. Manag. 10, 59–72 (2015). https://doi.org/10.14743/apem2015.2.192

  25. Muguthu, J.N.; Dong, G.; Ikua, B.: Optimization of machining parameters influencing machinability of Al2124SiCp (45%wt) metal matrix composite. J. Compos. Mater. 49, 217–229 (2015). https://doi.org/10.1177/0021998313516141

    Article  Google Scholar 

  26. Dang, J.; Zang, H.; An, Q.; Ming, W.; Chen, M.: Feasibility study of creep feed grinding of 300M steel with zirconium corundum wheel. Chin. J. Aeronaut. 35, 565–578 (2022).https://doi.org/10.1016/j.cja.2021.01.029

  27. Dang, J.; Zhang, H.; An, Q.; Ming, W.; Chen, M.: Surface modification of ultrahigh strength 300M steel under supercritical carbon dioxide (scCO2)-assisted grinding process. J. Manuf. Process. 61, 1–14 (2021). https://doi.org/10.1016/j.jmapro.2020.11.001

    Article  Google Scholar 

  28. Daniel, S.A.A.; Pugazhenthi, R.; Kumar, R.; Vijayananth, S.: Multi-objective prediction and optimization of control parameters in the milling of aluminium hybrid metal matrix composites using ANN and Taguchi-grey relational analysis. Def. Technol. 15, 545–556 (2019). https://doi.org/10.1016/j.dt.2019.01.001

    Article  Google Scholar 

  29. Karabulut, Sener.: Optimization of surface roughness and cutting force during AA7039/Al2O3 metal matrix composites milling using neural networks and taguchi method. Measurement 66, 139–149 (2015). https://doi.org/10.1016/j.measurement.2015.01.027

  30. Tsao, C.C.; Hocheng, H.: Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network. J. Mater. Process. Tech. 203, 342–348 (2008). https://doi.org/10.1016/j.jmatprotec.2006.04.126

    Article  Google Scholar 

  31. Premnath, A.A.; Alwarsamy, T.; Rajmohan, T.: Experimental investigation and optimization of process parameters in milling of hybrid metal matrix composites. Mater. Manuf. Process. 27, 1035–1044 (2012). https://doi.org/10.1080/10426914.2012.677911

    Article  Google Scholar 

  32. Jia, Y.; Cao, F.; Scudino, S.; Ma, P.; Li, H.; Yu, L.; Eckert, J.; Sun, J.: Microstructure and thermal expansion behavior of spray-deposited Al-50Si. Mater. Des. 57, 585–591 (2014). https://doi.org/10.1016/j.matdes.2013.12.066

    Article  Google Scholar 

  33. Xu, Z.; Wang, Z.: Experimental study on high speed milling of aluminum silicon alloy for T/R Modules. Electro-Mech. Eng. 34, 43–46 (2018). https://doi.org/10.19659/j.issn.1008-5300.2018.06.011

  34. Liu, C.; Gao, L.; Jiang, X.; Xu, W.; Yang, T.: Analytical modeling of subsurface damage depth in machining of SiCp/Al composites. Int. J. Mech. Sci. 185, 105874 (2020). https://doi.org/10.1016/j.ijmecsci.2020.105874

    Article  Google Scholar 

  35. Ghufran, M.; Uddin, G.M.: Comparative performance analysis of cemented carbide, TiN, TiAlN, and PCD coated inserts in dry machining of Al 2024 alloy. Int. J. Adv. Manuf. Tech. (2021). https://doi.org/10.1007/s00170-020-06315-5

    Article  Google Scholar 

  36. Wang, J.; Shang, Z.; Lv, P.; Fan, X.: Analysis and experimental research on affection on approach angle of tool nose radius. J. Graph. 40, 256–260 (2019). https://doi.org/10.11996/JG.j.2095-302X.2019020256

  37. Gopan, V.; Wins K, L.; Evangeline, G.; Surendran, A.: Experimental investigation for the multi-objective optimization of machining parameters on AISI D2 steel using particle swarm optimization coupled with artificial neural network. J. Adv. Manuf. Syst. 19, 589–606 (2020). https://doi.org/10.1142/S0219686720500286

  38. Barma, S.D.; Das, B.; Giri, A.; Majumder, S.; Bose, P.K.: Back propagation artificial neural network (BPANN) based performance analysis of diesel engine using biodiesel. J. Renew. Sustain. Ener. 3, 1–12 (2011). https://doi.org/10.1063/1.3517229

    Article  Google Scholar 

  39. Palanisamy, P.; Rajendran, I.; Shanmugasundaram, S.: Optimization of machining parameters using genetic algorithm and experimental validation for end-milling operations. Int. J. Adv. Manuf. Tech. 32, 644–655 (2007). https://doi.org/10.1007/s00170-005-0384-3

    Article  Google Scholar 

  40. Ren, J.; Zhou, J.; Zeng, J.: Analysis and optimization of cutter geometric parameters for surface integrity in milling titanium alloy using a modified grey-Taguchi method. P. I. Mech. Eng. B-J. Eng. 230, 2114–2128 (2016). https://doi.org/10.1177/0954405415599927

    Article  Google Scholar 

  41. Suneesh, E.; Sivapragash, M.: Multi-response optimisation of micro-milling performance while machining a novel magnesium alloy and its alumina composites. Measurement 168, 108345 (2020). https://doi.org/10.1016/j.measurement.2020.108345

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 52075168, 51605161), the Project of Department of Education of Hunan Province (No. 19B190), and the Scientific Research Fund of Hunan University of Science and Technology (No. KJ-2042).

Author information

Authors and Affiliations

Authors

Contributions

LJ was involved in conceptualization, methodology, investigation, data curation, writing—original draft. QN helped in conceptualization, methodology, supervision, funding acquisition, writing—review and editing. DZ contributed to investigation, methodology. SL was involved in validation, writing—review and editing. WY helped in supervision.

Corresponding author

Correspondence to Qiulin Niu.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

We would like to submit the manuscript entitled ‘Predictive modeling of surface roughness and feed force in Al-50wt% Si alloy milling based on response surface method and various optimal algorithms’ by Lu Jing, Qiulin Niu, Dilei Zhan, Shujian Li, Wenhui Yue, and we wish to be considered for publication in the ‘Arabian Journal for Science and Engineering.’

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, L., Niu, Q., Zhan, D. et al. Predictive Modeling of Surface Roughness and Feed Force in Al-50wt% Si Alloy Milling Based on Response Surface Method and Various Optimal Algorithms. Arab J Sci Eng 48, 3209–3225 (2023). https://doi.org/10.1007/s13369-022-07114-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07114-8

Keywords

Navigation