Skip to main content
Log in

Removal of Major Pollutants from Petroleum Wastewater by Adsorption with Activated Carbon Derived from Date Seed in an Inverse Fluidized Bed

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The present paper deals with the determination of pollutant removal efficiency of date pit-activated carbon (DPAC) from petroleum industry wastewater in a continuously operating inverse fluidized bed (IFB). The effect of physical and operating parameters of the adsorption process on total organic carbon (TOC), biological oxygen demand (BOD) and chemical oxygen demand (COD) of the petroleum wastewater were investigated through rigorous experimentation (184 data sets). The pollutant removal efficiency was found to be highly satisfactory with more than 95% reduction in COD, BOD and more than 88% reduction in TOC achieved under optimum condition within 160 min of wastewater circulation time through inverse fluidized DPAC bed. Three empirical correlations for percentage reductions of TOC, BOD and COD as a function of eight different physical and operating parameters were developed by dimensional analysis and the exponents were evaluated using 92 assorted experimental data and validated by the residual 92 data. The empirical equations developed were found to be well applicable within the range of dimensionless parameters \({Ar}_{m}\), \({Re}_{p}\), (\({\rho }_{l}/{(\rho }_{l}-{\rho }_{p}))\) and the dimensionless bed height of 1.663 to 55.4211, 0.1089 to 2.8181, 3.8644 to 4.3137 and 25.423 to 36.0169, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AC:

Activated carbon

v l (LT 1):

Actual velocity

BOD (ppm):

Biological oxygen demand

h bi (m):

Bed expansion

COD (ppm):

Chemical oxygen demand

t c (T):

Contact time

t cdim = \(\frac{{\mu }_{l} {t}_{c}}{{d}_{p}^{2}{(\rho }_{l}-{\rho }_{s})}\) :

Dimensionless circulation tank

\({{h}_{b}}_{dim}= \frac{{h}_{bi}}{{d}_{p}}\) :

Dimensionless initial bed height

DPAC:

Date pit-activated carbon

g (LT 2):

Gravitational acceleration

IFB:

Inverse fluidized bed

\(Ar_{m}= \frac{{ dp^{3} \left( {\rho l - \rho_{s} } \right)^{2} g}}{{\mu l^{2} }}\) :

Modified Archimedes number

\({\mathrm{Re}}_{p}\) :

Modified Reynolds number

F NET :

Net force

dp (L):

Particle diameter

\({\text{Re}}_{p} = \frac{{dp (\rho l - \rho_{s} )^{ } v_{s} }}{{ \mu_{l} }}\) :

Particle Reynolds number

PBOD :

Percentage BOD

PCOD :

Percentage COD

PTOC :

Percentage TOC

v s (LT 1):

Superficial velocity

h s :

Static bed

T c (T):

Time for complete cycle

TOC (ppm):

Total organic carbon

t c (sec):

Time of recirculation

v t (L):

Total volume of wastewater in the feed wastewater tank

\({\Delta \rho }_{dim}=\) \(\frac{{\rho }_{l} }{{{\rho }_{l}}- {\rho }_{s}}\),:

Dimensionless density difference

ρ l (ML 3):

Liquid density

µ l (ML 1T 1):

Liquid viscosity

ρ s (ML 3):

Particle density / Solid density

References

  1. Yousef, R.; Qiblawey, H.; El-Naas, M.H.: Adsorption as a process for produced water treatment: a review. Processes. 8, 1–22 (2020). https://doi.org/10.3390/pr8121657

    Article  Google Scholar 

  2. Al Jabri, F.; Muruganandam, L.; Aljuboury, D.A.D.A.: Treatment of the oilfield-produced water and oil refinery wastewater by using inverse fluidization-a review. Global Nest Rev 21, 204–210 (2019). https://doi.org/10.30955/gnj.002975

    Article  Google Scholar 

  3. El-Naas, M.H.; Al-Zuhair, S.; Alhaija, M.A.: Evaluation of an activated carbon packed bed for the adsorption of phenols from petroleum refinery wastewater. Environ. Sci. Pollut. Res. 24, 7511–7520 (2017). https://doi.org/10.1007/s11356-017-8469-8

    Article  Google Scholar 

  4. Aljuboury, D.A.D.A.; Palaniandy, P.; Abdul Aziz, H.B.; Feroz, S.A.D.A.: Treatment of petroleum wastewater by conventional and new technologies—a review. Glob. Nest J 19(3), 439–452 (2017). https://doi.org/10.30955/gnj.002239

    Article  Google Scholar 

  5. El-Nass, M.H.; Al-Zuhair, S.; Alhaija, M.A.: Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon. J. Hazard. Mater. 173, 750–757 (2010). https://doi.org/10.1016/j.jhazmat.2009.09.002

    Article  Google Scholar 

  6. Sueyoshi, M.; Al-Maamari, R.S.; Jibril, B.; Tasaki, M.; Okamura, K.; Kuwagaki, H.; Yahiro, H.; Sagata, K.; Han, Y.: Preparation and characterization of adsorbents for the treatment of water associated with oil production. J. Anal. Appl. Pyrolysis. 97, 80–87 (2012). https://doi.org/10.1016/j.jaap.2012.04.003

    Article  Google Scholar 

  7. Kulkarni, S.J.; Goswami, A.K.: Adsorption studies for organic matter removal from wastewater by using bagasse Fly ash in Batch and Column Operations. Inter. J. Sci. Res. 2, 180–183 (2013)

    Google Scholar 

  8. Tanweer, A.; Mohammad, D.; Mohammad, R.; Arniza, G.; Othman, S.; Rokiah, H.; Mohamad, N.; Mohamad, I.: The use of date palm as a potential adsorbent for wastewater treatment: a review. Environ. Sci. Pollut. Res. 19, 1464–1484 (2012). https://doi.org/10.1007/s11356-011-0709-8

    Article  Google Scholar 

  9. Daniel, V.V.; Gulyani, B.B.; Prakash Kumar, B.G.: Usage of date stones as adsorbents: a review. J. Dispers. Sci. Technol. 33(9), 1321–1331 (2012). https://doi.org/10.1080/01932691.2011.620532

    Article  Google Scholar 

  10. Gupta, V.K.: Suhas: application of low-cost adsorbents for dye removal—a review. J. Environ. Manag. 90, 2313–2342 (2019). https://doi.org/10.1016/j.jenvman.2008.11.017

    Article  Google Scholar 

  11. Karunya, S.; Feroz, S.; Al Harassi, S.; Kishore, S.: Treatment of Oman pharmaceutical industry wastewater using low-cost adsorbents. J. Multidiscipl. Eng. Sci. Technol. 2, 339–341 (2015)

    Google Scholar 

  12. Karunya, S., Prakas, S.J., Parthaprathim, G., Sheik, F.: Application of response surface methodology for optimizing processing conditions for the adsorption of pollutants from refinery effluent of Oman. Res. J. Biotechnol. 16, 55–65 (2021)

  13. Yakubu, M.K.; Gumel, M.S.; Abdullahi, A.M.: Use of activated carbon from date seeds to treat textile and tannery effluents. African J. Sci. Technol. 9, 39–49 (2008)

    Google Scholar 

  14. Bimal, D.; Uma Prasad, G.; Sudip Kumar, D.: Inverse fluidization using non-Newtonian liquids. Chem. Eng. Process. Process Intensif. 49, 1169–1175 (2010). https://doi.org/10.1016/j.cep.2010.08.018

    Article  Google Scholar 

  15. Ulaganathan, N.; Krishnaiah, K.: Hydrodynamic characteristics of two-phase inverse fluidized bed. Bioprocess Eng. 15, 159–164 (1996). https://doi.org/10.1007/BF00369620

    Article  Google Scholar 

  16. Safari, G.H.; Yetilmezsoy, K.; Mahvi, A.H.; Zarrabi, M.: post-treatment of secondary wastewater treatment plant effluent using a two-stage fluidized bed bioreactor system. J. Environ. Health Sci. Eng. 11, 1–9 (2013). https://doi.org/10.1186/2052-336X-11-10

    Article  Google Scholar 

  17. Haribabu, K.; Sivasubramanian, V.: Biodegradation of organic content in wastewater in fluidized bed bioreactor using low-density biosupport. Desalin. Water Treat. 57, 4322–4327 (2016). https://doi.org/10.1080/19443994.2014.992978

    Article  Google Scholar 

  18. Haribabu, K.; Sivasubramanian, V.: Treatment of wastewater in fluidized bed bioreactor using low density biosupport. Energy Proc. 50, 214–221 (2014). https://doi.org/10.1016/j.egypro.2014.06.026

    Article  Google Scholar 

  19. Al Jabri, F.; Muruganandam, L.; Aljuboury, D.A.D.A.: Treatment of the oilfield-produced water and oil refinery wastewater by using inverse fluidization-a review. Global Nest Rev. 21, 204–210 (2019). https://doi.org/10.30955/gnj.002975

    Article  Google Scholar 

  20. Rajasimman, M.; Karthikeyan, C.: Aerobic digestion of starch wastewater in fluidized bed bioreactor with low density biomass support. J. Hazard. Matter 143, 82–86 (2007). https://doi.org/10.1016/j.jhazmat.2006.08.071

    Article  Google Scholar 

  21. Sokol, W.; Korpal, W.: Determination of the optimal operational parameters for a three-phase fluidized bed bioreactor with a light biomass support when used in treatment of phenolic waste waters. Biochem. Eng. J 20, 49–56 (2004). https://doi.org/10.1016/j.bej.2004.02.009

    Article  Google Scholar 

  22. Sokol, W.: Treatment of refinery wastewater in a three-phase fluidized bed bioreactor with a low-density biomass support. Biochem. Eng. J. 15, 1–10 (2003). https://doi.org/10.1016/S1369-703X(02)00174-2

    Article  Google Scholar 

  23. Amaiz, C.; Elmaleh, S.; Martinez, L.J.; Moletta, R.: Start-up of an anaerobic inverse turbulent bed reactor fed with wine distillery wastewater using pre-colonised bioparticles. Water Sci. Technol. 51, 153–158 (2005). https://doi.org/10.2166/wst.2005.0019

    Article  Google Scholar 

  24. Garcfa-Bernet, D.; Buffiere, P.; Elmaleh, S.; Moletta, R.: Application of the down-flow fluidized bed to the anaerobic treatment of wine distillery wastewater. Wat. Sci. Tech. 38, 393–399 (1998). https://doi.org/10.1016/S0273-1223(98)00716-1

    Article  Google Scholar 

  25. Arnaiz, C.; Buffiere, P.; Elmaleh, S.; Lebrato, J.; Moletta, R.: Anaerobic digestion of dairy wastewater by inverse fluidization: the inverse fluidized bed and the inverse turbulent bed reactors. Environ. Technol. 24, 1431–1443 (2003). https://doi.org/10.1080/09593330309385687

    Article  Google Scholar 

  26. Hummadi, K.K.; Luo, S.; He, S.: Adsorption of methylene blue dye from the aqueous solution via bio-adsorption in the inverse fluidized-bed adsorption column using the torrefied rice husk. Chemosphere 287, 131907 (2022). https://doi.org/10.1016/j.chemosphere.2021.131907

    Article  Google Scholar 

  27. Begum, S.; Sikkandar, M.Y.; Prakash, N.B.; Bakouri, M.; Alanazi, A.B.; Alkhatlan, N.M.S.: Investigation of flow dynamic characteristics of inverse fluidized bed biofilm reactor for degrading pharmaceutical based biomedical wastewater. Environ. Eng. Res. 26, 1–8 (2021). https://doi.org/10.4491/eer.2020.182

    Article  Google Scholar 

  28. Yang, H.; Fan, M.; Liu, A.; Dong, L.: General formulas for drag coefficient and settling velocity of sphere based on theoretical law. Int. J. Min. Sci. Technol. 25(2), 219–223 (2015). https://doi.org/10.1016/j.ijmst.2015.02.009

    Article  Google Scholar 

  29. Menya, E.; Olupot, P.W.; Storz, H.; Lubwama, M.; Kiros, Y.: Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chem. Eng. Res. Design. 129, 271–296 (2018). https://doi.org/10.1016/j.cherd.2017.11.008

    Article  Google Scholar 

  30. Salmana, J.M.; Njokua, V.O.; Hameeda, B.H.: Bentazon and carbofuran adsorption onto date seed activated carbon Kinetics and equilibrium. Chem. Eng. J. 173, 361–368 (2011). https://doi.org/10.1016/j.cej.2011.07.066

    Article  Google Scholar 

  31. Al-Mutairi, N.Z.: 2,4-Dinitrophenol adsorption by date seeds: Effect of physico-chemical environment and regeneration study. Desalination 250, 892–901 (2010). https://doi.org/10.1016/j.desal.2008.10.035

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by the National United Dates Company L.L.C, Oman Oil Refineries and Petroleum Industries Company, SAOC (ORPIC). They would also like to thank National University of Science and Technology (NUST), Muscat, Oman and National Institute of Technology Durgapur, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parthapratim Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakhile, K., Sarkar, J.P., Gupta, P. et al. Removal of Major Pollutants from Petroleum Wastewater by Adsorption with Activated Carbon Derived from Date Seed in an Inverse Fluidized Bed. Arab J Sci Eng 48, 8557–8569 (2023). https://doi.org/10.1007/s13369-022-07109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07109-5

Keywords

Navigation