Skip to main content

Advertisement

Log in

Internet of Things Based Communication Architecture for Switchport Security and Energy Management in Interoperable Smart Microgrids

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The unrelenting growth of present-day urbanization and its consequent burden on the utility grid, and insufficient conventional energy sources encourage demand-side energy management. This needs the deployment of local microgrids that uses renewable/alternative energy sources. Also, the present-day urban scenario is equipped with a combination of heterogeneous buildings (with different generation and load profiles) formed as community microgrids. So, there is a possibility of energy sharing among these buildings to cater for their electricity needs instead of depending on the utility grid all the time, thereby can reduce the utility grid burden. However, the interoperations of such microgrids require an effective architecture, which involves a three-layer (electrical, communication, and information technology (IT)) operation. Further, each of these layers has specific challenges to be addressed. So, a continuous evolution of architecture is highly desired to fruitfully address various operational issues for the establishment of interoperable smart microgrids. In this view, this paper proposes an Internet of Things-based communication architecture for developing interoperable microgrids in a locality. To effectively use the available energy sources, an energy management scheme is proposed, which can provide energy sharing among the microgrids. Further, switchport security aspects are studied and realized a three-mode security mechanism to identify and isolate unauthorised users in the network. The implementation of the proposed architecture is done using Cisco Packet Tracer by considering a case study. From the results, it is observed that the proposed architecture fruitfully established a security-enabled energy management system that can help for the growth of interoperable smart microgrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

MGi :

ith Microgrid (i = 1, 2, 3, 4)

P ESi :

Power generated by ith MG (i = 1, 2, 3, 4)

PLi :

Power consumed by the load of ith MG (i = 1, 2, 3, 4)

Li :

Load in ith MG (i = 1, 2, 3, 4)

P eESi :

Excess power capacity in ith MG (i = 1, 2, 3, 4)

P UG :

Power from the utility grid

References

  1. Smaoui, M.; Abdelkafi, A.; Krichen, L.: Optimal sizing of stand-alone photovoltaic/wind/hydrogen hybrid system supplying a desalination unit. Sol. Energy. 120, 263–276 (2015). https://doi.org/10.1016/j.solener.2015.07.032

    Article  Google Scholar 

  2. Kumar, Y.V.P.; Ravikumar, B.: Integrating Renewable Energy Sources to an Urban Building in India: Challenges, Opportunities, and Techno-Economic Feasibility Simulation. Technol. Econ. Smart Grids Sustain. Energy. 1, 1 (2016). https://doi.org/10.1007/s40866-015-0001-y

    Article  Google Scholar 

  3. Kumar, Y.V.P., Bhimasingu, R.: Improving resiliency in renewable energy based green microgrids using virtual synchronous machines controlled inverter. In: 2015 IEEE Innovative Smart Grid Technologies - Asia (ISGT ASIA). pp. 1–6. IEEE (2015). https://doi.org/10.1109/ISGT-Asia.2015.7387178.

  4. Kandaperumal, G.; Srivastava, A.K.: Resilience of the electric distribution systems: concepts, classification, assessment, challenges, and research needs. IET Smart Grid. 3, 133–143 (2020). https://doi.org/10.1049/iet-stg.2019.0176

    Article  Google Scholar 

  5. Abhinav, S.; Modares, H.; Lewis, F.L.; Davoudi, A.: Resilient Cooperative Control of DC Microgrids. IEEE Trans. Smart Grid. 10, 1083–1085 (2019). https://doi.org/10.1109/TSG.2018.2872252

    Article  Google Scholar 

  6. Parhizi, S.; Lotfi, H.; Khodaei, A.; Bahramirad, S.: State of the Art in Research on Microgrids: A Review. IEEE Access. 3, 890–925 (2015). https://doi.org/10.1109/ACCESS.2015.2443119

    Article  Google Scholar 

  7. Pavan Kumar, Y.V.; Bhimasingu, R.: Review and retrofitted architectures to form reliable smart microgrid networks for urban buildings. IET Networks. 4, 338–349 (2015). https://doi.org/10.1049/iet-net.2015.0023

    Article  Google Scholar 

  8. V. Pavan Kumar, Y., Bhimasingu, R.: Electrical machines based DC/AC energy conversion schemes for the improvement of power quality and resiliency in renewable energy microgrids. Int. J. Electr. Power Energy Syst. 90, 10–26 (2017). https://doi.org/10.1016/j.ijepes.2017.01.015.

  9. Abera, F.Z.; Khedkar, V.: Machine Learning Approach Electric Appliance Consumption and Peak Demand Forecasting of Residential Customers Using Smart Meter Data. Wirel. Pers. Commun. 111, 65–82 (2020). https://doi.org/10.1007/s11277-019-06845-6

    Article  Google Scholar 

  10. Ebrahimi, J., Abedini, M., Rezaei, M.M.: Optimal scheduling of distributed generations in microgrids for reducing system peak load based on load shifting. Sustain. Energy, Grids Networks. 23, 100368 (2020). https://doi.org/10.1016/j.segan.2020.100368.

  11. Xu, H., Huang, H., Khalid, R.S., Yu, H.: Distributed machine learning based smart-grid energy management with occupant cognition. In: 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm). pp. 491–496. IEEE (2016). https://doi.org/10.1109/SmartGridComm.2016.7778809.

  12. Chojecki, A.; Rodak, M.; Ambroziak, A.; Borkowski, P.: Energy management system for residential buildings based on fuzzy logic: design and implementation in smart-meter. IET Smart Grid. 3, 254–266 (2020). https://doi.org/10.1049/iet-stg.2019.0005

    Article  Google Scholar 

  13. Rao, B.H.; Arun, S.L.; Selvan, M.P.: Framework of locality electricity trading system for profitable peer-to-peer power transaction in locality electricity market. IET Smart Grid. 3, 318–330 (2020). https://doi.org/10.1049/iet-stg.2019.0131

    Article  Google Scholar 

  14. Ahmadi, F.; Akrami, A.; Doostizadeh, M.; Aminifar, F.: Energy pricing and demand scheduling in retail market: how microgrids’ integration affects the market. IET Smart Grid. 3, 309–317 (2020). https://doi.org/10.1049/iet-stg.2019.0195

    Article  Google Scholar 

  15. Pavan Kumar, Y.V.; Bhimasingu, R.: Renewable energy based microgrid system sizing and energy management for green buildings. J. Mod. Power Syst. Clean Energy. 3, 1–13 (2015). https://doi.org/10.1007/s40565-015-0101-7

    Article  Google Scholar 

  16. Li, Z.; Shahidehpour, M.; Liu, X.: Cyber-secure decentralized energy management for IoT-enabled active distribution networks. J. Mod. Power Syst. Clean Energy. 6, 900–917 (2018). https://doi.org/10.1007/s40565-018-0425-1

    Article  Google Scholar 

  17. Rana, M.M., Li, L.: Renewable microgrid state estimation using the Internet of Things communication network. In: 2017 19th International Conference on Advanced Communication Technology (ICACT). pp. 823–829. IEEE (2017). https://doi.org/10.23919/ICACT.2017.7890232.

  18. Harmon, E.; Ozgur, U.; Cintuglu, M.H.; de Azevedo, R.; Akkaya, K.; Mohammed, O.A.: The Internet of Microgrids: A Cloud-Based Framework for Wide Area Networked Microgrids. IEEE Trans. Ind. Informatics. 14, 1262–1274 (2018). https://doi.org/10.1109/TII.2017.2785317

    Article  Google Scholar 

  19. Minoli, D.; Sohraby, K.; Occhiogrosso, B.: IoT Considerations, Requirements, and Architectures for Smart Buildings—Energy Optimization and Next-Generation Building Management Systems. IEEE Internet Things J. 4, 269–283 (2017). https://doi.org/10.1109/JIOT.2017.2647881

    Article  Google Scholar 

  20. Wu, Y.; Wu, Y.; Guerrero, J.; Vasquez, J.; Palacios-García, E.; Guan, Y.: IoT-enabled Microgrid for Intelligent Energy-aware Buildings: A Novel Hierarchical Self-consumption Scheme with Renewables. Electronics 9, 550 (2020). https://doi.org/10.3390/electronics9040550

    Article  Google Scholar 

  21. Saleem, Y.; Crespi, N.; Rehmani, M.H.; Copeland, R.: Internet of Things-Aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions. IEEE Access. 7, 62962–63003 (2019). https://doi.org/10.1109/ACCESS.2019.2913984

    Article  Google Scholar 

  22. Kabalci, Y.; Kabalci, E.; Padmanaban, S.; Holm-Nielsen, J.B.; Blaabjerg, F.: Internet of Things Applications as Energy Internet in Smart Grids and Smart Environments. Electronics 8, 972 (2019). https://doi.org/10.3390/electronics8090972

    Article  Google Scholar 

  23. Bhalerao, P.O.: Communication system design and simulation for future micro grids in NS2. In: 2016 International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT). pp. 688–690. IEEE (2016). https://doi.org/10.1109/ICACDOT.2016.7877674.

  24. Dumitrache, C.G., Predusca, G., Circiumarescu, L.D., Angelescu, N., Puchianu, D.C.: Comparative study of RIP, OSPF and EIGRP protocols using Cisco Packet Tracer. In: 2017 5th International Symposium on Electrical and Electronics Engineering (ISEEE). pp. 1–6. IEEE (2017). https://doi.org/10.1109/ISEEE.2017.8170694.

  25. Trabelsi, Z., Saleous, H.: Exploring the Opportunities of Cisco Packet Tracer For Hands-on Security Courses on Firewalls. In: 2019 IEEE Global Engineering Education Conference (EDUCON). pp. 411–418. IEEE (2019). https://doi.org/10.1109/EDUCON.2019.8725112.

  26. Yaqub, U.; Al-Nasser, A.; Sheltami, T.: Implementation of a hybrid wind-solar desalination plant from an Internet of Things (IoT) perspective on a network simulation tool. Appl. Comput. Informatics. 15, 7–11 (2019). https://doi.org/10.1016/j.aci.2018.03.001

    Article  Google Scholar 

  27. Nalini, J., Sankar, P.G., Ganeshbabu, D.: Optimized router to avoid packet drop function. In: 2017 IEEE International Conference on Smart Technologies and Management for Computing, Communication, Controls, Energy and Materials (ICSTM). pp. 377–381. IEEE (2017). https://doi.org/10.1109/ICSTM.2017.8089188.

  28. Khan, A.R., Bilal, S.M., Othman, M.: A performance comparison of open source network simulators for wireless networks. In: 2012 IEEE International Conference on Control System, Computing and Engineering. pp. 34–38. IEEE (2012). https://doi.org/10.1109/ICCSCE.2012.6487111.

  29. Marzal, S.; Salas-Puente, R.; Gonzalez-Medina, R.; Garcera, G.; Figueres, E.: Efficient Event Notification Middleware for Smart Microgrids Over P2P Networks. IEEE Trans. Smart Grid. 10, 4589–4602 (2019). https://doi.org/10.1109/TSG.2018.2865432

    Article  Google Scholar 

  30. Tenti, P., Caldognetto, T.: Optimal control of Local Area Energy Networks (E-LAN). Sustain. Energy, Grids Networks. 14, 12–24 (2018). https://doi.org/10.1016/j.segan.2018.03.002.

  31. Thale, S.S.; Agarwal, V.: Controller Area Network Assisted Grid Synchronization of a Microgrid With Renewable Energy Sources and Storage. IEEE Trans. Smart Grid. 7, 1442–1452 (2016). https://doi.org/10.1109/TSG.2015.2453157

    Article  Google Scholar 

  32. Horalek, J., Sobeslav, V., Krejcar, O., Balik, L.: Communications and Security Aspects of Smart Grid Networks Design. In: International Conference on Information and Software Technologies (ICIST 2014). pp. 35–46. Springer (2014). https://doi.org/10.1007/978-3-319-11958-8_4.

  33. Pandit, V., Li, H., Gottumukkala, V.P.V., Agrawal, D.P.: APCAPT: Asymmetric power control against packet tracer attacks for base station location anonymity. In: 2012 IEEE 9th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS 2012). pp. 1–6. IEEE (2012). https://doi.org/10.1109/MASS.2012.6708506.

  34. Reddy, G.P., Pavan Kumar, Y. V.: Smart Grid Communication and Networking: Review of Standards. In: 2021 International Conference on Applied and Theoretical Electricity (ICATE). pp. 1–6. IEEE (2021). https://doi.org/10.1109/ICATE49685.2021.9465005.

  35. Kalalas, C.; Thrybom, L.; Alonso-Zarate, J.: Cellular Communications for Smart Grid Neighborhood Area Networks: A Survey. IEEE Access. 4, 1469–1493 (2016). https://doi.org/10.1109/ACCESS.2016.2551978

    Article  Google Scholar 

  36. Serban, I.; Cespedes, S.; Marinescu, C.; Azurdia-Meza, C.A.; Gomez, J.S.; Hueichapan, D.S.: Communication Requirements in Microgrids: A Practical Survey. IEEE Access. 8, 47694–47712 (2020). https://doi.org/10.1109/ACCESS.2020.2977928

    Article  Google Scholar 

  37. Ali, I., Hussain, S.: Communication Design for Energy Management Automation in Microgrid. IEEE Trans. Smart Grid. 1–1 (2016). https://doi.org/10.1109/TSG.2016.2606131.

  38. Reddy, G.P., Kumar, Y.V.P.: Retrofitted IoT Based Communication Network with Hot Standby Router Protocol and Advanced Features for Smart Buildings. Int. J. Renew. Energy Res. 11, 1354–1369 (2021). https://www.ijrer.org/ijrer/index.php/ijrer/article/view/12222.

  39. Kounev, V.; Tipper, D.; Yavuz, A.A.; Grainger, B.M.; Reed, G.F.: A Secure Communication Architecture for Distributed Microgrid Control. IEEE Trans. Smart Grid. 6, 2484–2492 (2015). https://doi.org/10.1109/TSG.2015.2424160

    Article  Google Scholar 

  40. Alladi, T.; Chamola, V.; Rodrigues, J.J.P.C.; Kozlov, S.A.: Blockchain in Smart Grids: A Review on Different Use Cases. Sensors. 19, 4862 (2019). https://doi.org/10.3390/s19224862

    Article  Google Scholar 

  41. Mengelkamp, E.; Notheisen, B.; Beer, C.; Dauer, D.; Weinhardt, C.: A blockchain-based smart grid: towards sustainable local energy markets. Comput. Sci. - Res. Dev. 33, 207–214 (2018). https://doi.org/10.1007/s00450-017-0360-9

    Article  Google Scholar 

  42. Lakshmi, G., Thiyagarajan, G.: Decentralized Energy To Power Rural Homes Through Smart Contracts And Carbon Credit. In: 2021 7th International Conference on Electrical Energy Systems (ICEES). pp. 280–283. IEEE (2021). https://doi.org/10.1109/ICEES51510.2021.9383683.

  43. Suciu, G., Sachian, M.-A., Dobrea, M., Istrate, C.-I., Petrache, A.L., Vulpe, A., Vochin, M.: Securing the Smart Grid: A Blockchain-based Secure Smart Energy System. In: 2019 54th International Universities Power Engineering Conference (UPEC). pp. 1–5. IEEE (2019). https://doi.org/10.1109/UPEC.2019.8893484.

  44. Mollah, M.B.; Zhao, J.; Niyato, D.; Lam, K.-Y.; Zhang, X.; Ghias, A.M.Y.M.; Koh, L.H.; Yang, L.: Blockchain for future smart grid: a comprehensive survey. IEEE Internet Things J. 8, 18–43 (2021). https://doi.org/10.1109/JIOT.2020.2993601

    Article  Google Scholar 

  45. Liu, Q., Michael Kamoto, K., Liu, X.: Microgrids-as-a-service for rural electrification in sub-saharan Africa. Comput. Mater. Contin. 63, 1249–1261 (2020). https://doi.org/10.32604/cmc.2020.05598

  46. Liu, W., He, J., Li, M., Jin, R., Hu, Ji.,Zhang, Z.: An efficient supervised energy disaggregation scheme for power service in smart grid. Intell. Autom. Soft Comput. 25, 585–594 (2019). https://doi.org/10.31209/2019.100000113

  47. Naim, K., Khelifa, B., Fateh, B.: A cryptographic-based approach for electricity theft detection in smart grid. Comput. Mater. Contin. 62, 97–117 (2020). https://doi.org/10.32604/cmc.2020.09391

  48. Bi, W., Yu, F., Cao, N., Huo, W., Cao, G., Han, X., Sun, L., Higgs, R.: Research on Data extraction and analysis of software defect in IoT communication software. Comput. Mater. Contin. 65, 1837–1854 (2020). https://doi.org/10.32604/cmc.2020.010420

  49. Wang, J.; Yang, Y.; Wang, T.; Sherratt, R.S.; Zhang, J.: Big Data service architecture: a survey. J. Internet Technol. 21, 393–406 (2020). https://doi.org/10.3966/160792642020032102008

    Article  Google Scholar 

  50. Amin, A., Liu, X.-H., Khan, I., Uthansaku, P., Forsat, M., Sajad Mirjavadi, S.: A robust resource allocation scheme for device-to-device communications based on Q-learning. Comput. Mater. Contin. 65, 1487–1505 (2020). https://doi.org/10.32604/cmc.2020.011749.

  51. Zhang, J.; Zhong, S.; Wang, T.; Chao, H.C.; Wang, J.: Blockchain-based systems and applications: a survey. J. Internet Technol. 21, 1–14 (2020). https://doi.org/10.3966/160792642020012101001

    Article  Google Scholar 

  52. Wei, Y., Qu, Y., Zhao, M., Zhang, L., Richard Yu, F.: Resource allocation and power control policy for device-to-device communication using multi-agent reinforcement learning. Comput. Mater. Contin. 63, 1515–1532 (2020). https://doi.org/10.32604/cmc.2020.09130

  53. Dinh, H.U.Y.T.; Yun, J.; Kim, D.M.I.N.; Lee, K.; Kim, D.: A home energy management system with renewable energy and energy storage utilizing main grid and electricity selling. IEEE Access. 8, 49436–49450 (2020). https://doi.org/10.1109/ACCESS.2020.2979189

    Article  Google Scholar 

  54. Nkosi, N., Roux, P. Le, Nnachi, G., Okojie, D.: Smart energy management in buildings using Matlab simulink. In: 2021 IEEE PES/IAS PowerAfrica, pp.1–5. IEEE (2021). https://doi.org/10.1109/PowerAfrica52236.2021.9543242.

Download references

Funding

This work was supported by Project Grant No: SRG/2019/000648, sponsored by the Start-up Research Grant (SRG) scheme of Science and Engineering Research Board (SERB), a statutory body under the Department of Science and Technology (DST), Government of INDIA.

Author information

Authors and Affiliations

Authors

Contributions

GPR contributed to conceptualization, data curation, formal analysis, investigation, methodology, software, validation, visualization, writing—original draft, writing—review and editing. YVPK contributed to conceptualization, investigation, methodology, supervision, resources, validation, visualization, writing—review and editing.

Corresponding author

Correspondence to Y. V. Pavan Kumar.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethical Approval

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradeep Reddy, G., Pavan Kumar, Y.V. Internet of Things Based Communication Architecture for Switchport Security and Energy Management in Interoperable Smart Microgrids. Arab J Sci Eng 48, 5809–5827 (2023). https://doi.org/10.1007/s13369-022-07056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07056-1

Keywords

Navigation