Skip to main content

Advertisement

Log in

Homogeneous Blend PVDF Porous Membrane Without Pore-Forming Agent for Water Treatment

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Heterogeneous blending and addition of pore-forming agents are common methods to prepare porous membranes, but they are easy to form large interface pores on the surface and inside of the membrane, which affects the mechanical properties and rejection performance, while homogeneous blending has better system compatibility, forms homogeneous interface surface pores, is not easy to form macroporous defects, and the obtained membrane has better structure and mechanical properties. Therefore, PVDF homogeneous blended membranes were prepared, in this study, by homogeneous blending without adding pore-forming agents. The partial compatibility of the homogeneous blending system promoted the formation of homogeneous interface pores and improved the membrane structure stability and mechanical properties. The pure water flux of the homogeneous blended PVDF membrane was 18.54 L·m−2·h−1·bar−1, which was 8 times higher than that of the pure PVDF membrane, and the protein rejection rate was maintained at 92.83%. The strength and elongation at break of the homogeneous blended PVDF membrane were 5.63 MPa and 28.26%, respectively. The mechanical properties were better than the heterogeneous blended membrane reported in the literature, mainly because of the formation of homogeneous interface pores, which enhanced the membrane structure stability and improved the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sun, Y.; Rajabzadeh, S.; Fang, L.; Jeon, S.; Zhou, Z.; Ohmukai, Y.; Miki, J.; Wang, X.; Matsuyama, H.: Poly(vinylidene difluoride)/poly(tetrafluoroethylene-co-vinylpyrrolidone) blend membranes with antifouling properties. Mater. Sci. Eng. C Mater. Biol. Appl. 75, 79–87 (2017). https://doi.org/10.1016/j.msec.2017.02.047

    Article  Google Scholar 

  2. Zhao, M.; Ren, Z.Z.; Yang, M.B.; Yang, W.: Effects of modified nano-silica on the microstructure of PVDF and its microporous membranes. J. Polym. Res. (2019). https://doi.org/10.1007/s10965-018-1681-5

    Article  Google Scholar 

  3. Wei, D.; Zhou, S.; Li, M.; Xue, A.; Zhang, Y.; Zhao, Y.; Zhong, J.; Yang, D.: PVDF/palygorskite composite ultrafiltration membranes: Effects of nano-clay particles on membrane structure and properties. Appl. Clay. Sci. 181, 105171 (2019). https://doi.org/10.1016/j.clay.2019.105171

    Article  Google Scholar 

  4. Chen, F.; Shi, X.; Chen, X.; Chen, W.: Preparation and characterization of amphiphilic copolymer PVDF-g-PMABS and its application in improving hydrophilicity and protein fouling resistance of PVDF membrane. Appl. Surf. Sci. 427, 787–797 (2018). https://doi.org/10.1016/j.apsusc.2017.08.096

    Article  Google Scholar 

  5. Wang, H.; Zhao, X.; He, C.: Innovative permeation and antifouling properties of PVDF ultrafiltration membrane with stepped hollow SiO2 microspheres in membrane matrix. Mater. Lett. 182, 376–379 (2016). https://doi.org/10.1016/j.matlet.2016.06.075

    Article  Google Scholar 

  6. Ayyaru, S.; Dinh, T.T.L.; Ahn, Y.H.: Enhanced antifouling performance of PVDF ultrafiltration membrane by blending zinc oxide with support of graphene oxide nanoparticle. Chemosphere 241, 125068 (2020). https://doi.org/10.1016/j.chemosphere.2019.125068

    Article  Google Scholar 

  7. Liu, X.; Yuan, H.; Wang, C.; Zhang, S.; Zhang, L.; Liu, X.; Liu, F.; Zhu, X.; Rohani, S.; Ching, C.; Lu, J.: A novel PVDF/PFSA-g-GO ultrafiltration membrane with enhanced permeation and antifouling performances. Sep. Purif. Technol. 233, 116038 (2020). https://doi.org/10.1016/j.seppur.2019.116038

    Article  Google Scholar 

  8. Li, J.H.; Zheng, H.; Lin, H.X.; Zhang, B.X.; Wang, J.B.; Li, T.L.; Zhang, Q.Q.: Preparation of three dimensional hydroxyapatite nanoparticles/poly(vinylidene fluoride) blend membranes with excellent dye removal efficiency and investigation of adsorption mechanism. Chin. J. Polym. Sci. 37(12), 1234–1247 (2019). https://doi.org/10.1007/s10118-019-2271-7

    Article  Google Scholar 

  9. Younas, H.; Zhou, Y.; Li, X.; Li, X.; Sun, Q.; Cui, Z.; Wang, Z.: Fabrication of high flux and fouling resistant membrane: a unique hydrophilic blend of polyvinylidene fluoride/polyethylene glycol/polymethyl methacrylate. Polymer 179, 121593 (2019). https://doi.org/10.1016/j.polymer.2019.121593

    Article  Google Scholar 

  10. Shen, X.; Liu, P.; Xia, S.; Liu, J.; Wang, R.; Zhao, H.; Liu, Q.; Xu, J.; Wang, F.: Anti-fouling and anti-bacterial modification of poly(vinylidene fluoride) membrane by blending with the capsaicin-based copolymer. Polym-Basel (2019). https://doi.org/10.3390/polym11020323

    Article  Google Scholar 

  11. Dong, H.; Xiao, K.; Tang, X.; Zhang, Z.; Dai, J.; Long, R.; Liao, W.: Preparation and characterization of polyurethane (PU)/polyvinylidene fluoride (PVDF) blending membrane. Desalin. Water Treat. 57(8), 3405–3413 (2016). https://doi.org/10.1080/19443994.2014.988659

    Article  Google Scholar 

  12. Zhao, J.Q.; Han, H.R.; Wang, Q.Q.; Yan, C.Y.; Li, D.Y.; Yang, J.; Feng, X.; Yang, N.; Zhao, Y.P.; Chen, L.: Hydrophilic and anti-fouling PVDF blend ultrafiltration membranes using polyacryloylmorpholine-based triblock copolymers as amphiphilic modifiers. React. Funct. Polym. 139, 92–101 (2019). https://doi.org/10.1016/j.reactfunctpolym.2019.03.018

    Article  Google Scholar 

  13. Park, S.H.; Ahn, Y.; Jang, M.; Kim, H.J.; Cho, K.Y.; Hwang, S.S.; Lee, J.H.; Baek, K.Y.: Effects of methacrylate based amphiphilic block copolymer additives on ultra filtration PVDF membrane formation. Sep. Purif. Technol. 202, 34–44 (2018). https://doi.org/10.1016/j.seppur.2018.03.018

    Article  Google Scholar 

  14. Li, N.; Xiao, C.; Mei, S.; Zhang, S.: The multi-pore-structure of polymer–silicon hollow fiber membranes fabricated via thermally induced phase separation combining with stretching. Desalination 274(1), 284–291 (2011). https://doi.org/10.1016/j.desal.2011.03.020

    Article  Google Scholar 

  15. Li, N.; Xiao, C.: Effect of the preparation conditions on the permeation of ultrahigh-molecular-weight polyethylene/silicon dioxide hybrid membranes. J. Appl. Polym. Sci. 117(5), 2817–2824 (2010). https://doi.org/10.1002/app.32073

    Article  Google Scholar 

  16. Li, N.N.; Xiao, C.F.: Preparation and properties of UHMWPE/SiO2 hybrid hollow fibre membranes via thermally induced phase separation-stretching method. Iran. Polym. J. 18(6), 479–489 (2009)

    Google Scholar 

  17. Li, N.; Xiao, C.; Wang, R.; Zhang, S.: The effect of binary diluents on the performance of ultrahigh molecular weight polyethylene/SiO2 hybrid hollow fiber membrane. J. Appl. Polym. Sci. 124(S1), E169–E176 (2012). https://doi.org/10.1002/app.34831

    Article  Google Scholar 

  18. Kang, G.D.; Cao, Y.M.: Application and modification of poly(vinylidene fluoride) (PVDF) membranes – A review. J. Membr. Sci. 463, 145–165 (2014). https://doi.org/10.1016/j.memsci.2014.03.055

    Article  Google Scholar 

  19. Ali, I.; Bamaga, O.A.; Gzara, L.; Bassyouni, M.; Abdel-Aziz, M.H.; Soliman, M.F.; Drioli, E.; Albeirutty, M.: Assessment of blend PVDF membranes, and the effect of polymer concentration and blend composition. Membran-Basel 8(1), 13 (2018). https://doi.org/10.3390/membranes8010013

    Article  Google Scholar 

  20. Liang, X.; Jin, X.; Li, L.; Wang, T.: Preparation and characterization of polyacrylonitrile blend membrane with the different molecular weight. Membr. Sci. Tech 37(04), 20–26 (2017). https://doi.org/10.16159/j.cnki.issn1007-8924.2017.04.004

    Article  Google Scholar 

  21. Chen, Y.; Zou, H.; Liang, M.; Liu, P.: Rheological, thermal, and morphological properties of low-density polyethylene/ultra-high-molecular-weight polyethylene and linear low-density polyethylene/ultra-high-molecular-weight polyethylene blends. J. Appl. Polym. Sci. 129(3), 953 (2013). https://doi.org/10.1002/app.38374

    Article  Google Scholar 

  22. Xu, L.; Chen, C.; Zhong, G.J.; Lei, J.; Xu, J.Z.; Hsiao, B.S.; Li, Z.M.: Tuning the superstructure of ultrahigh-molecular-weight polyethylene/low-molecular-weight polyethylene blend for artificial joint application. ACS Appl. Mater. Inter. 4(3), 1521–1529 (2012). https://doi.org/10.1021/am201752d

    Article  Google Scholar 

  23. Li, Q.; Xu, Z.L.; Yu, L.Y.: Effects of mixed solvents and PVDF types on performances of PVDF microporous membranes. J. Appl. Polym. Sci. 115(4), 2277–2287 (2010). https://doi.org/10.1002/app.31324

    Article  Google Scholar 

  24. Kuleznev, V.N.; Mel’nikova, O.L.; Klykova, V.D.: Dependence of modulus and viscosity upon composition for mixtures of polymers. Effects of phase composition and properties of phases. Eur. Polym. J. 14(6), 455–461 (1978). https://doi.org/10.1016/0014-3057(78)90067-8

    Article  Google Scholar 

  25. Singh, Y.P.; Singh, R.P.: Compatibility studies on solutions of polymer blends by viscometric and ultrasonic techniques. Eur. Polym. J. 19(6), 535–541 (1983). https://doi.org/10.1016/0014-3057(83)90206-9

    Article  Google Scholar 

  26. Yan, L.; Wang, J.: Development of a new polymer membrane — PVB/PVDF blended membrane. Desalination 281, 455–461 (2011). https://doi.org/10.1016/j.desal.2011.08.024

    Article  Google Scholar 

  27. Qiu, Z.B.; Zhou, P.: Effect of biodegradable poly(ethylene adipate) with low molecular weight as an efficient plasticizer on the significantly enhanced crystallization rate and mechanical properties of poly((L)- lactide). RSC Adv. 4(93), 51411–51417 (2014). https://doi.org/10.1039/c4ra08827a

    Article  Google Scholar 

  28. Fang, L.F.; Yang, H.Y.; Cheng, L.; Kato, N.; Jeon, S.; Takagi, R.; Matsuyama, H.: Effect of molecular weight of sulfonated poly(ether sulfone) (SPES) on the mechanical strength and antifouling properties of poly(ether sulfone)/SPES blend membranes. Ind. Eng. Chem. Res. 56(39), 11302–11311 (2017). https://doi.org/10.1021/acs.iecr.7b02996

    Article  Google Scholar 

  29. Liu, K.; Zhao, X.; Li, P.; Wang, Z.; Hua, J.: Study on epoxy modification of HVBR and damping performance of EHVBR/hindered phenol hybrids. J. Appl. Polym. Sci. (2019). https://doi.org/10.1002/app.47196

    Article  Google Scholar 

  30. Cakar, F.; Sakar, D.; Cankurtaran, O.; Karaman, F.: The evaluation of miscibility of blends of poly(ether imide) (Ultem®1000) and a copolyester of bisphenol-A with terephthalic and isophthalic acid (Ardel®D-100) by viscosimetry. Eur. Polym. J. 43(2), 507–513 (2007). https://doi.org/10.1016/j.eurpolymj.2006.11.019

    Article  Google Scholar 

  31. Ye, C.; Yu, Q.; He, T.; Shen, J.; Li, Y.; Li, J.: Physical and rheological properties of maleic anhydride-incorporated PVDF: Does MAH act as a physical crosslinking point for PVDF molecular chains? ACS Omega 4(25), 21540–21547 (2019). https://doi.org/10.1021/acsomega.9b03256

    Article  Google Scholar 

  32. Chen, J.; Liu, Z.S.; Wang, K.; Huang, J.R.; Li, K.; Nie, X.A.; Jiang, J.C.: Epoxidized castor oil-based diglycidyl-phthalate plasticizer: Synthesis and thermal stabilizing effects on poly(vinyl chloride). J. Appl. Polym. Sci. (2019). https://doi.org/10.1002/app.47142

    Article  Google Scholar 

  33. Panda, S.R.; De, S.: Preparation, characterization and antifouling properties of polyacrylonitrile/polyurethane blend membranes for water purification. RSC Adv. 5(30), 23599–23612 (2015). https://doi.org/10.1039/c5ra00736d

    Article  Google Scholar 

  34. Holda, A.K.; Aernouts, B.; Saeys, W.; Vankelecom, I.F.J.: Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes. J. Membr. Sci. 442, 196–205 (2013). https://doi.org/10.1016/j.memsci.2013.04.017

    Article  Google Scholar 

  35. Li, H.B.; Shi, W.Y.; Zhang, Y.F.; Liu, D.Q.; Liu, X.F.: Effects of additives on the morphology and performance of PPTA/PVDF in situ blend UF membrane. Polymers-Basel 6(6), 1846–1861 (2014). https://doi.org/10.3390/polym6061846

    Article  Google Scholar 

  36. Mohsenpour, S.; Esmaeilzadeh, F.; Safekordi, A.; Tavakolmoghadam, M.; Rekabdar, F.; Hemmati, M.: The role of thermodynamic parameter on membrane morphology based on phase diagram. J. Mol. Liq. 224, 776–785 (2016). https://doi.org/10.1016/j.molliq.2016.10.042

    Article  Google Scholar 

  37. Wang, Z.; Ma, J.: The role of nonsolvent in-diffusion velocity in determining polymeric membrane morphology. Desalination 286, 69–79 (2012). https://doi.org/10.1016/j.desal.2011.11.006

    Article  Google Scholar 

  38. Smolders, C.A.; Reuvers, A.J.; Boom, R.M.; Wienk, I.M.: Microstructures in phase-inversion membranes. Part 1. Formation of macrovoids. J. Membr. Sci. 73(2), 259–275 (1992)

    Article  Google Scholar 

  39. Boom, R.M.; Wienk, I.M.; van den Boomgaard, T.; Smolders, C.A.: Microstructures in phase inversion membranes Part 2 The role of a polymeric additive. J. Membr. Sci. 73(2), 277–292 (1992). https://doi.org/10.1016/0376-7388(92)80135-7

    Article  Google Scholar 

  40. Zuo, D.Y.; Zhang, L.; Yi, C.H.; Zuo, H.T.: Effects of compatibility of poly(L-lactic-acid) and thermoplastic polyurethane on mechanical property of blend fiber. Polym. Adv. Technol. 25(12), 1406–1411 (2014). https://doi.org/10.1002/pat.3382

    Article  Google Scholar 

  41. Wu, Q.; Fang, J.F.; Zheng, M.H.; Luo, Y.; Wang, X.; Xu, L.X.; Zhang, C.H.: Morphology evolution and rheological behaviors of pp/sr thermoplastic Vulcanizate. Polym-Basel 11(1), 11 (2019). https://doi.org/10.3390/polym11010175

    Article  Google Scholar 

  42. Muchtar, S.; Arahman, N.; Yusuf, M.; Mulyati, S.: Effects of PEG molecular weights on PVDF membrane for humic acid-fed ultrafiltration process. IOP Conf. Series: Mater. Sci. Eng. (2017). https://doi.org/10.1088/1757-899X/180/1/012129

    Article  Google Scholar 

  43. Shen, J.; Zhang, Q.; Yin, Q.; Cui, Z.; Li, W.; Xing, W.: Fabrication and characterization of amphiphilic PVDF copolymer ultrafiltration membrane with high anti-fouling property. J. Membr. Sci. 521, 95–103 (2017). https://doi.org/10.1016/j.memsci.2016.09.006

    Article  Google Scholar 

  44. Wu, L.; Liu, Y.; Hu, J.; Feng, X.; Ma, C.; Wen, C.: Preparation of polyvinylidene fluoride composite ultrafiltration membrane for micro-polluted surface water treatment. Chemosphere 284, 131294 (2021). https://doi.org/10.1016/j.chemosphere.2021.131294

    Article  Google Scholar 

  45. Fontananova, E.; Jansen, J.C.; Cristiano, A.; Curcio, E.; Drioli, E.: Effect of additives in the casting solution on the formation of PVDF membranes. Desalination 192(1), 190–197 (2006). https://doi.org/10.1016/j.desal.2005.09.021

    Article  Google Scholar 

  46. Yang, B.; Yang, X.; Liu, B.; Chen, Z.; Chen, C.; Liang, S.; Chu, L.Y.; Crittenden, J.: PVDF blended PVDF-g-PMAA pH-responsive membrane: effect of additives and solvents on membrane properties and performance. J. Membr. Sci. 541, 558–566 (2017). https://doi.org/10.1016/j.memsci.2017.07.045

    Article  Google Scholar 

  47. Pezeshk, N.; Rana, D.; Narbaitz, R.M.; Matsuura, T.: Novel modified PVDF ultrafiltration flat-sheet membranes. J. Membr. Sci. 389, 280–286 (2012). https://doi.org/10.1016/j.memsci.2011.10.039

    Article  Google Scholar 

  48. Hou, D.; Fan, H.; Jiang, Q.; Wang, J.; Zhang, X.: Preparation and characterization of PVDF flat-sheet membranes for direct contact membrane distillation. Sep. Purif. Technol. 135, 211–222 (2014). https://doi.org/10.1016/j.seppur.2014.08.023

    Article  Google Scholar 

  49. Anvari, A.; Yancheshme, A.A.; Rekaabdar, F.; Hemmati, M.; Tavakolmoghadam, M.; Safekordi, A.: PVDF/PAN blend membrane: preparation, characterization and fouling analysis. J. Polym. Environ. 25(4), 1348–1358 (2017). https://doi.org/10.1007/s10924-016-0889-x

    Article  Google Scholar 

  50. Ekambaram, K.; Doraisamy, M.: Study on the fabrication, characterization and performance of PVDF/calcium stearate composite nanofiltration membranes. Desalination 385, 24–38 (2016). https://doi.org/10.1016/j.desal.2016.01.029

    Article  Google Scholar 

  51. Wang Y. Y.: Preparation and application of ionic liquid/graphene oxide/PVDF microfiltration membrane (Master Thesis), Shenyang University of Technology, 2019

  52. Dizon, G.V.; Venault, A.: Direct in-situ modification of PVDF membranes with a zwitterionic copolymer to form bi-continuous and fouling resistant membranes. J. Membr. Sci. 550, 45–58 (2018). https://doi.org/10.1016/j.memsci.2017.12.065

    Article  Google Scholar 

  53. Carretier, S.; Chen, L.A.; Venault, A.; Yang, Z.R.; Aimar, P.; Chang, Y.: Design of PVDF/PEGMA-b-PS-b-PEGMA membranes by VIPS for improved biofouling mitigation. J. Membr. Sci. 510, 355–369 (2016). https://doi.org/10.1016/j.memsci.2016.03.017

    Article  Google Scholar 

  54. Yang, M.C.; Liu, T.Y.: The permeation performance of polyacrylonitrile/polyvinylidine fluoride blend membranes. J. Membr. Sci. 226(1), 119–130 (2003). https://doi.org/10.1016/j.memsci.2003.08.013

    Article  Google Scholar 

  55. Hossein Razzaghi, M.; Safekordi, A.; Tavakolmoghadam, M.; Rekabdar, F.; Hemmati, M.: Morphological and separation performance study of PVDF/CA blend membranes. J. Membr. Sci. 470, 547–557 (2014). https://doi.org/10.1016/j.memsci.2014.07.026

    Article  Google Scholar 

  56. Yuan, X.S.; Liu, W.; Zhu, W.Y.; Zhu, X.X.: Enhancement in flux and antifouling properties of polyvinylidene fluoride/polycarbonate blend membranes for water environmental improvement. ACS Omega 5(46), 30201–30209 (2020). https://doi.org/10.1021/acsomega.0c04656

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Tianjin [Grant Numbers: 18JCZDJC37000].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nana Li.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Lu, Q., Yang, J. et al. Homogeneous Blend PVDF Porous Membrane Without Pore-Forming Agent for Water Treatment. Arab J Sci Eng 48, 8519–8530 (2023). https://doi.org/10.1007/s13369-022-07052-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07052-5

Keywords

Navigation