Skip to main content
Log in

State-of-the-Art Review on the Role and Applicability of Select Nano-Compounds in Geotechnical and Geoenvironmental Applications

  • Review Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The traditional soil stabilization techniques, which primarily include calcium-rich additives, are gradually replaced by environmentally friendly techniques as the former increases the carbon footprint emissions. On the other hand, nanomaterials (particles with a size range of less than 100 nm) are gaining acceptance in geotechnical and geoenvironmental engineering due to their non-toxic nature and less energy consumption required for production. These materials have entirely different properties from conventional materials. When mixed with soil particles, their relatively larger specific surface area values trigger an easy and rapid reaction. The paper reviews the applicability of select nanomaterials such as metallic nanoparticles (which include nano-copper oxide (nano-CuO), nano-magnesium oxide (nano-MgO), iron oxide nanoparticles (nano-Fe2O3), nano-alumina (nano-Al2O3), nano-clay, nano-silica (nano-SiO2), colloidal silica, to name a few, in the areas of geotechnical and geoenvironmental engineering by highlighting the associated mechanisms of interaction. The targeted geotechnical properties include plasticity, compressibility, consolidation, permeability, and strength characteristics under different conditions. Further, the effect of the select nanoparticles on microbial activity, their applicability in remediation of organic and inorganic contaminants from different soil–water systems, and their cost-effectiveness are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stevens, C.; Kanie, N.: The transformative potential of the sustainable development goals (SDGs). Int. Environ. Agreem. 16, 393–396 (2016). https://doi.org/10.1007/s10784-016-9324-y

    Article  Google Scholar 

  2. Firoozi, A.A.; Guney Olgun, C.; Firoozi, A.A.; Baghini, M.S.: Fundamentals of soil stabilization. Int. J. Geo-Eng. 8, 1–16 (2017). https://doi.org/10.1186/s40703-017-0064-9

    Article  Google Scholar 

  3. Ikeagwuani, C.C.; Obeta, I.N.; Agunwamba, J.C.: Stabilization of black cotton soil subgrade using sawdust ash and lime. Soils and Found. 59, 162–175 (2019). https://doi.org/10.1016/j.sandf.2018.10.004

    Article  Google Scholar 

  4. Pandey, A.; Rabbani, A.: Soil stabilization using cement. Int. J. Civ. Eng. Technol. 8, 316–322 (2017)

    Google Scholar 

  5. Moghal, A.A.B.; Obaid, A.A.K.; Al-Refeai, T.O.: Effect of accelerated loading on the compressibility characteristics of lime-treated semiarid soils. J. Mater. Civ. Eng. 26, 1009–1016 (2014). https://doi.org/10.1061/(asce)mt.1943-5533.0000882

    Article  Google Scholar 

  6. Moghal, A.A.B.; Obaid, A.A.K.; Al-Refeai, T.O.; Al-Shamrani, M.A.: Compressibility and durability characteristics of lime treated expansive semiarid soils. J. Test. Eval. 43, 20140060 (2015). https://doi.org/10.1520/jte20140060

    Article  Google Scholar 

  7. Worrell, E.; Price, L.; Martin, N.; Hendriks, C.; Meida, L.O.: Carbon dioxide emissions from the global cement industry. Annu. Rev. Energy. Environ. 26, 303–329 (2001). https://doi.org/10.1146/annurev.energy.26.1.303

    Article  Google Scholar 

  8. Ashfaq, M.; Lal, M.H.; Moghal, A.A.B.; Murthy, V.R.: Carbon footprint analysis of coal gangue in geotechnical engineering applications. Indian. Geotech. J. 50, 646–654 (2020). https://doi.org/10.1007/s40098-019-00389-z

    Article  Google Scholar 

  9. Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F.: The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecules 25, 112 (2019). https://doi.org/10.3390/molecules25010112 (Basel, Switzerland)

    Article  Google Scholar 

  10. Pal, Singh, J., Kumar, M., Sharma, A., Pandey, G., Chae, K. H., Lee, S.: Bottom-up and top-down approaches for MgO. In: Sonochemical Reactions. IntechOpen (2020). https://doi.org/10.5772/intechopen.91182.

  11. Ugwu, O.O.; Arop, J.B.; Nwoji, C.U.; Osadebe, N.N.: Nanotechnology as a preventive engineering solution to highway infrastructure failures. J. Constr. Eng. Manag. 139, 987–993 (2013). https://doi.org/10.1061/(asce)co.1943-7862.0000670

    Article  Google Scholar 

  12. Hegde, K.; Brar, S.K.; Verma, M.; Surampalli, R.Y.: Current understandings of toxicity, risks and regulations of engineered nanoparticles with respect to environmental microorganisms. Nanotechnol. Environ. Eng. 1, 5 (2016). https://doi.org/10.1007/s41204-016-0005-4

    Article  Google Scholar 

  13. Mitra, S.; Sarkar, A.; Sen, S.: Removal of chromium from industrial effluents using nanotechnology: a review. Nanotechnol. Environ. Eng. 2, 11 (2017). https://doi.org/10.1007/s41204-017-0022-y

    Article  Google Scholar 

  14. Gallagher, P.M.; Conlee, C.T.; Rollins, K.M.: Full-scale field testing of colloidal silica grouting for mitigation of liquefaction risk. J. Geotech. Geoenviron. Eng. 133, 186–196 (2007). https://doi.org/10.1061/(asce)1090-0241(2007)133:2(186)

    Article  Google Scholar 

  15. Persoff, P., Finsterle, S., Moridis, G.J., Apps, J., Pruess, K., Muller, S. J.: Injectable barriers for waste isolation. Office of Scientific and Technical Information (OSTI) (1995). https://doi.org/10.2172/106544

  16. Hossain, K.; Rameeja, S.: Importance of nanotechnology in civil engineering. Eur. J. Sustain. Dev. 4, 161–166 (2015)

    Article  Google Scholar 

  17. You, Z.; Mills-Beale, J.; Foley, J.M.; Roy, S.; Odegard, G.M.; Dai, Q.; Goh, S.W.: Nanoclay-modified asphalt materials: preparation and characterization. Constr. Build. Mater. 25(2), 1072–1078 (2011). https://doi.org/10.1016/j.conbuildmat.2010.06.070

    Article  Google Scholar 

  18. Taha, M.R.: Geotechnical properties of soil-ball milled soil mixtures. In: Nanotechnology in Construction 3, pp. 377–382. Springer Berlin Heidelberg, Berlin (2009). https://doi.org/10.1007/978-3-642-00980-8_51

    Chapter  Google Scholar 

  19. Imanaka, N.; Köhler, J.; Masui, T.; Adachi, G.Y.; Taguchi, E.; Mori, H.: Inclusions of nanometer-sized Al2O3 particles in a crystalline (Sc, Lu)2(WO4)3 matrix. J. Am. Ceram. Soc. 83, 427–429 (2004). https://doi.org/10.1111/j.1151-2916.2000.tb01211.x

    Article  Google Scholar 

  20. Changizi, F.; Haddad, A.: Effect of nano-SiO2 on the geotechnical properties of cohesive soil. Geotech. Geol. Eng. 34, 725–733 (2016). https://doi.org/10.1007/s10706-015-9962-9

    Article  Google Scholar 

  21. Bahmani, S.H.; Huat, B.B.K.; Asadi, A.; Farzadnia, N.: Stabilization of residual soil using SiO2 nanoparticles and cement. Constr. Build. Mater. 64, 350–359 (2014). https://doi.org/10.1016/j.conbuildmat.2014.04.086

    Article  Google Scholar 

  22. Mohammadi, M.; Niazian, M.: Investigation of nano-clay effect on geotechnical properties of Rasht clay. Int. J. Adv. Sci. Tech. Res. 3, 37–46 (2013)

    Google Scholar 

  23. Bahari, M., Nikookar, M., Arabani, M., Haghi, A.K., Khodabandeh, H.: Stabilization of silt by nano-clay. In: Proceeding of 7th National Congress on Civil Engineering, Zahedan-Iran IR. Vol. 2, pp. 7–8 (2013). https://civilica.com/doc/217047/

  24. Zahedi, M.; Sharifipour, M.; Jahanbakhshi, F.; Bayai, R.: Nanoclay performance on resistance of clay under freezing cycles. J. Appl. Sci. Environ. Manage. 18, 427–434 (2014)

    Google Scholar 

  25. Poux, M.; Fayolle, P.; Bertrand, J.; Bridoux, D.; Bousquet, J.: Powder mixing: some practical rules applied to agitated systems. Powder Technol. 68, 213–234 (1991). https://doi.org/10.1016/0032-5910(91)80047-m

    Article  Google Scholar 

  26. Alexandre, M.; Dubois, P.: Polymer-layered silicate nanocomposites: preparation, properties, and uses of a new class of materials. Mater. Sci. Eng. R. Rep. 28, 1–63 (2000). https://doi.org/10.1016/s0927-796x(00)00012-7

    Article  Google Scholar 

  27. Majeed, Z.H.; Taha, M.R.: Effect of nanomaterial treatment on geotechnical properties of a Penang soft soil. J. Asian Sci. Res. 2, 587–592 (2012)

    Google Scholar 

  28. Waalewijn-Kool, P.L.; Diez Ortiz, M.; Van Gestel, C.A.M.: Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil. Ecotoxicology 21, 1797–1804 (2012). https://doi.org/10.1007/s10646-012-0914-3

    Article  Google Scholar 

  29. Gallagher, P.M.; Pamuk, A.; Abdoun, T.: Stabilization of liquefiable soils using colloidal silica grout. J. Mater. Civ. Eng. 19, 33–40 (2007). https://doi.org/10.1061/(ASCE)0899-1561(2007)19:1(33)

    Article  Google Scholar 

  30. Van der Ploeg, M.J.C.; Baveco, J.M.; Van der Hout, A.; Bakker, R.; Rietjens, I.M.C.M.; Van den Brink, N.W.: Effects of C 60 nanoparticle exposure on earthworms ( Lumbricus rubellus ) and implications for population dynamics. Environ. Pollut. 159, 198–203 (2011). https://doi.org/10.1016/j.envpol.2010.09.003

    Article  Google Scholar 

  31. Maleki, Y. S., Sharafi, H.: The exploration into the effect of nanoclay additive on soil geotechnical-engineering basic properties. Advances in Environ. Biol. pp. 989–993 (2014). https://link.gale.com/apps/doc/A392176479/AONE?u=anon~a1d0e61&sid=googleScholar&xid=a1feb700. Accessed 13 Apr 2022

  32. Persoff, P.; Apps, J.; Moridis, G.; Whang, J.M.: Effect of dilution and contaminants on sand grouted with colloidal silica. J. Geotech. Geoenviron. Eng. 125, 461–469 (1999). https://doi.org/10.1061/(asce)1090-0241(1999)125:6(461)

    Article  Google Scholar 

  33. Ng, C.W.W.; Coo, J.L.: Hydraulic conductivity of clay mixed with nanomaterials. Can. Geotech. J. 52, 808–811 (2015). https://doi.org/10.1139/cgj-2014-0313

    Article  Google Scholar 

  34. Iranpour, B.; Haddad, A.: The influence of nanomaterials on collapsible soil treatment. Eng. Geol. 205, 40–53 (2016). https://doi.org/10.1016/j.enggeo.2016.02.015

    Article  Google Scholar 

  35. Moridis, G., Apps, J., Persoff, P., et al.: A field test of a waste containment technology using a new generation of injectable barrier liquids (No. LBNL--38817). Lawrence Berkeley National Lab. In: Proceeding, Spectrum 96, Seattle, WA, pp.18–23 (1996). https://inis.iaea.org/search/search.aspx?orig_q=RN:28036379

  36. Conlee, C.T.; Gallagher, P.M.; Boulanger, R.W.; Kamai, R.: Centrifuge modeling for liquefaction mitigation using colloidal silica stabilizer. J. Geotech. Geoenviron. Eng. 138, 1334–1345 (2012). https://doi.org/10.1061/(asce)gt.1943-5606.0000703

    Article  Google Scholar 

  37. Gallagher, P.M.: Passive site remediation for mitigation of liquefaction risk. Doctoral dissertation, Virginia Tech. (2000) http://hdl.handle.net/10919/29610

  38. Ochoa-Cornejo, F., Bobet, A., Santagata, M., et al.: Liquefaction 50 years after anchorage 1964; How nanoparticles could prevent it. Network for earthquake engineering simulation (NEES). In: Proceedings of the 10th national conference in earthquake engineering, Earthquake engineering research institute, Anchorage, AK (2014). https://doi.org/10.4231/D3CC0TT8W.

  39. Huang, Y.; Wang, L.: Laboratory investigation of liquefaction mitigation in silty sand using nanoparticles. Eng. Geol. 204, 23–32 (2016). https://doi.org/10.1016/j.enggeo.2016.01.015

    Article  Google Scholar 

  40. Priyadharshini, R.; Arumairaj, P.D.: Improvement of bearing capacity of soft clay using nanomaterials. Int. J. Sci. Res. 4, 218–221 (2015)

    Google Scholar 

  41. Babu, S.; Joseph, S.: Effect of nano materials on properties of soft soil. Int. J. Sci. Res. 5, 634–637 (2016)

    Google Scholar 

  42. Taha, M.R.; Taha, O.M.E.: Influence of nanomaterial on the expansive and shrinkage soil behavior. J. Nanopart. Res. 14, 1–13 (2012). https://doi.org/10.1007/s11051-012-1190-0-

    Article  Google Scholar 

  43. Ngwenya, C.Z.; Ntwampe, K.S.O.; Silwana, N.: Synthesis of metallic nanoparticles from Beta vulgaris using a single-pot green chemistry approach and their environmental engineering application. Nanotechnol. Environ. Eng. 1, 1–13 (2016). https://doi.org/10.1007/s41204-016-0012-5

    Article  Google Scholar 

  44. Zhang, G.; Germaine, J.; Whittle, A.: Effects of Fe-oxides cementation on the deformation characteristics of a highly weathered old alluvium in San Juan Puerto Rico. Soils Found. 43, 119–130 (2003). https://doi.org/10.3208/sandf.43.4_119

    Article  Google Scholar 

  45. Hooshyar, Z.; Rezanejade Bardajee, G.; Ghayeb, Y.: Sonication enhanced removal of nickel and cobalt ions from polluted water using an iron based sorbent. J. Chem. 2013, 1–5 (2013). https://doi.org/10.1155/2013/786954

    Article  Google Scholar 

  46. Rasalingam, S.; Peng, R.; Koodali, R.T.: Removal of hazardous pollutants from wastewaters: applications of TiO2-SiO2 mixed oxide materials. J. Nanomater. 2014, 1–42 (2014). https://doi.org/10.1155/2014/617405

    Article  Google Scholar 

  47. Ge, Y.; Schimel, J.P.; Holden, P.A.: Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ. Sci. Technol. 45, 1659–1664 (2011). https://doi.org/10.1021/es103040t

    Article  Google Scholar 

  48. Chou, K.S.; Lu, Y.C.; Lee, H.H.: Effect of alkaline ion on the mechanism and kinetics of chemical reduction of silver. Mater. Chem. Phys. 94, 429–433 (2005). https://doi.org/10.1016/j.matchemphys.2005.05.029

    Article  Google Scholar 

  49. Cho, M.; Chung, H.; Choi, W.; Yoon, J.: Different inactivation behaviors of MS-2 phage and Escherichia coli in TiO2 photocatalytic disinfection. Appl. Environ. Microbiol. 71, 270–275 (2005). https://doi.org/10.1128/AEM.71.1.270-275.2005

    Article  Google Scholar 

  50. Lambe, T.W.; Whitman, R.V.: Soil mechanics. John Wiley & Sons, Nashville (1969)

    Google Scholar 

  51. Mitchell, J.K.: Fundamentals of Soil Behavior. 2nd Edition, John Wiley & Sons, Hoboken—references—scientific research publishing. In: Scirp.org (1993). https://www.scirp.org/(S(351jmbntvnsjt1aadkposzje))/reference/ReferencesPapers.aspx?ReferenceID=1832892. Accessed 16 Dec 2021

  52. Shadfan, H.; Dixon, J.B.; Calhoun, F.G.: Iron oxide properties versus strength of ferruginous crust and iron-glaebules in soils. Soil. Sci. 140, 317–325 (1985). https://doi.org/10.1097/00010694-198511000-00001

    Article  Google Scholar 

  53. IS 2720 (Part 7).: Test for determination of water content, dry density relation using light compaction, Bureau of Indian Standards, New Delhi, (2011)

  54. Azzam, W.R.: Behavior of modified clay microstructure using polymer nanocomposites technique. Alex. Eng. J. 53, 143–150 (2014). https://doi.org/10.1016/j.aej.2013.11.010

    Article  Google Scholar 

  55. BS 1377 (Part 2).: Methods of test for soils for civil engineering purposes—Classification tests and determination of geotechnical properties. (2022)

  56. ASTM (American Society for Testing and Materials), D4318-17e1.: Standard Test Methods for Liquid Limit, Plasticity Limit, and Plasticity Index of Soils, “Annual Book of ASTM Standards, Section 4, Vol. 04.08, Soil and Rock; Building Stones,” ASTM, Philadelphia, (2018). https://doi.org/10.1520/D4318-17E01

  57. IS 2720 (Part 5).: Test for determination of Liquid Limit, Plastic Limit, and Plasticity Index of soil, Indian Standards Institution, New Delhi, (2006)

  58. Khalid, N.; Arshad, M.F.; Mukri, M.; Mohamad, K.; Kamarudin, F.: Influence of nano-soil particles in soft soil stabilization. Electro. J. Geotech. Eng. 20, 731–738 (2015). https://doi.org/10.1200/JCO.1983.1.2.138

    Article  Google Scholar 

  59. Alsharef, J.M.A.; Taha, M.R.; Firoozi, A.A.; Govindasamy, P.: Potential of using nanocarbons to stabilize weak soils. Appl. Environ. Soil. Sci. 2016, 1–9 (2016). https://doi.org/10.1155/2016/5060531

    Article  Google Scholar 

  60. Nasehi, S.A.; Uromeihy, A.; Nikudel, M.R.; Morsali, A.: Use of nanoscale zero-valent iron and nanoscale hydrated lime to improve geotechnical properties of gas oil contaminated clay: a comparative study. Environ. Earth. Sci. 75, 1–20 (2016). https://doi.org/10.1007/s12665-016-5443-6

    Article  Google Scholar 

  61. ASTM (American Society for Testing and Materials), D698-12.: Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12,400 ft-lbf/ft3 (600 kN-m/m3)), “Annual Book of ASTM Standards, Vol. 04.08, Soil and Rock; Building Stones,” ASTM, Philadelphia, (2021). https://doi.org/10.1520/D0698-12R21

  62. Nohani, E.; Alimakan, E.: The effect of nanoparticles on geotechnical properties of clay. Int. J. Life Sci. 9, 25–27 (2015). https://doi.org/10.3126/ijls.v9i4.12670

    Article  Google Scholar 

  63. ASTM (American Society for Testing and Materials), D5084-00e1.: Standard Test Methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall Permeameter, “Annual Book of ASTM Standards, Vol. 04.08, Soil and Rock; Building Stones,” ASTM, Philadelphia, (2017). https://doi.org/10.1520/D5084-00E01.

  64. Bhadra, S.M.; Leander, T.: Effect of fly ash and nano calcium silicate in clayey soil used as clay liner. Int. Res. J. Eng. Technol. 7, 2451–2455 (2020)

    Google Scholar 

  65. Reginatto, C., Cecchin, I., Carvalho, R.L.R., et al.: Influence of iron nanoparticle concentration on the hydraulic conductivity of a residual clayey soil. In: Geo-Chicago 2016. American Society of Civil Engineers, Reston, VA pp. 458–466 (2016). https://doi.org/10.1061/9780784480120.047

  66. ASTM (American Society for Testing and Materials), D2435/ D2435M-11.: Standard Test Methods for one dimensional consolidation properties of soil using incremental loading, “Annual Book of ASTM Standards, Vol. 04.08, Soil and Rock; Building Stones,” ASTM, Philadelphia, (2020). https://doi.org/10.1520/D2435_D2435M-11

  67. IS: 2720 (Part 15).: Method of test for soil for determination of consolidation properties, Bureau of Indian Standards, New Delhi, (2002)

  68. ASTM (American Society for Testing and Materials), D1833-21.: Standard Test Methods for California Bearing Ratio (CBR) of Laboratory Compacted Soil, “Annual Book of ASTM Standards, Vol. 04.08, Soil and Rock; Building Stones,” ASTM, Philadelphia, (2021). https://doi.org/10.1520/D1883-21

  69. ASTM (American Society for Testing and Materials), D3080-04.: Standard Test Methods for Direct Shear Test of Soil Under Consolidated Drained Conditions. “Annual Book of ASTM Standards, Vol. 04.08, Soil and Rock; Building Stones,” ASTM, Philadelphia, (2012). https://doi.org/10.1520/D3080-04

  70. ASTM (American Society for Testing and Materials), D2166-06.: Standard Test Methods for Unconfined Compressive Strength of Cohesive Soil. “Annual Book of ASTM Standards, Vol. 04.08, Soil and Rock; Building Stones,” ASTM, Philadelphia, (2016). https://doi.org/10.1520/D2166-06

  71. ASTM (American Society for Testing and Materials), D5333-92.: Standard Test Methods For Measurement of Collapse Potential of Soil. “Annual Book of ASTM Standards, Vol. 04.08, Soil and Rock; Building Stones,” ASTM, Philadelphia, (2017). https://doi.org/10.1520/D5333-92R96

  72. BS 1377 (Part 7).: Methods of test for soils for civil engineering purposes Part 7: shear strength tests (Total stress), (2015)

  73. IS 2720 (Part 10).: Method of test for soil for determination of unconfined compressive strength of soil, Bureau of Indian Standards, New Delhi, (2006)

  74. JTG 3430–2020.: Test Methods of Soil for Highway Engineering, Institute of Highway Research, Ministry of Transport, (2021)

  75. Subramani, V.; Sridevi, S.: Soil stabilization using nano materials. Int. J. Res. Appl. Sci. Eng. Technol. 4, 641–645 (2016)

    Google Scholar 

  76. Mohammad Ali, Z.S.; Shabnam, M.; Armina, S.: The potential use of nanoclay to increase strength of contaminated soil. MATEC Web Conf 67, 02010 (2016). https://doi.org/10.1051/matecconf/20166702010

    Article  Google Scholar 

  77. Moayed, R.Z.; Rahmani, H.: Effect of Nano-SiO2 solution on the strength characteristics of Kaolinite. J. Geotech. Geoenviron. Eng. 11, 83–87 (2017). https://doi.org/10.5281/zenodo.1131922

    Article  Google Scholar 

  78. Mohammed, S.A.S.; Moghal, A.A.B.; Lateef, M.A.: Strength characteristics of nano calcium silicate, fly ash and lime blended tropical soils. In IFCEE 2018, 105–114 (2018). https://doi.org/10.1061/9780784481592.011

    Article  Google Scholar 

  79. Mohammad, N.; Moghal, A.A.B.; Rasheed, R.M.; Almajed, A.: Critical review on the efficacy of electrokinetic techniques in geotechnical and geoenvironmental applications. Arab. J. Geosci. 15, 781 (2022). https://doi.org/10.1007/s12517-022-10037-1

    Article  Google Scholar 

  80. Tratnyek, P.G.; Johnson, R.L.: Nanotechnologies for environmental cleanup. Nano Today 1, 44–48 (2006). https://doi.org/10.1016/s1748-0132(06)70048-2

    Article  Google Scholar 

  81. Mohammed, S.A.S.; Moghal, A.A.B.: Efficacy of nano calcium silicate (NCS) treatment on tropical soils in encapsulating heavy metal ions: leaching studies validation. Innov. Infrastruct. Solut. 1, 21 (2016). https://doi.org/10.1007/s41062-016-0024-9

    Article  Google Scholar 

  82. Mohammed, S.A.S.; Moghal, A.A.B.; Sanaulla, P.F.; Kotresha, K.; Reddy, H.P.: Cadmium fixation studies on contaminated soils using nano calcium silicate—treatment strategy. Geotech. Front. 2017, 434–442 (2017a). https://doi.org/10.1061/9780784480434.047

    Article  Google Scholar 

  83. Mohammed, S.A.S.; Sanaulla, P.F.; Kotresha, K.; Moghal, A.A.B.: Sustainable use of contaminated soils amended with nano calcium silicate mixture for nickel encapsulation in an aqueous medium. Mater. Today Proc. 4, 12271–12277 (2017b). https://doi.org/10.1016/j.matpr.2017.09.159

    Article  Google Scholar 

  84. Mohammed, S.A.S.; Moghal, A.A.B.: Nanomaterials-based solidification/stabilization of metal-contaminated soils. In: Nanomaterials for soil remediation, pp. 385–407. Elsevier, Amsterdam (2021). https://doi.org/10.1016/B978-0-12-822891-3.00018-9

    Chapter  Google Scholar 

  85. Beddow, J.; Stolpe, B.; Cole, P., et al.: Effects of engineered silver nanoparticles on the growth and activity of ecologically important microbes: Impact of silver nanoparticles on environmental microbes. Environ. Microbiol. Rep. 6, 448–458 (2014). https://doi.org/10.1111/1758-2229.12147

    Article  Google Scholar 

  86. Tegou, E.; Magana, M.; Katsogridaki, A.E., et al.: Terms of endearment: Bacteria meet graphene nanosurfaces. Biomaterials 89, 38–55 (2016). https://doi.org/10.1016/j.biomaterials.2016.02.030

    Article  Google Scholar 

  87. Guerra, F.D.; Attia, M.F.; Whitehead, D.C.; Alexis, F.: Nanotechnology for environmental remediation: materials and applications. Molecules 23, 1760 (2018). https://doi.org/10.3390/molecules23071760

    Article  Google Scholar 

  88. Moghal, A.A.B.; Lateef, M.A.; Mohammed, S.A.S.; Lemboye, K.K.; Chittoori, B.C.S.; Almajed, A.: Efficacy of enzymatically induced calcium carbonate precipitation in the retention of heavy metal ions. Sustainability. 12, 7019 (2020). https://doi.org/10.3390/su12177019

    Article  Google Scholar 

  89. Moghal, A.A.B.; Lateef, M.A.; Abu Sayeed Mohammed, S., et al.: Heavy metal immobilization studies and enhancement in geotechnical properties of cohesive soils by EICP technique. Appl. Sci. 10, 756 (2020). https://doi.org/10.3390/app10217568 (Basel)

    Article  Google Scholar 

  90. Liu, G.; Zhang, C.; Zhao, M., et al.: Comparison of nanomaterials with other unconventional materials used as additives for soil improvement in the context of sustainable development: a review. Nanomaterials 11(1), 15 (2020). https://doi.org/10.3390/nano11010015 (Basel)

    Article  Google Scholar 

  91. Ciardi, G.; Vannucchi, G.; Madiai, C.: Effect of colloidal silica grouting on geotechnical properties of liquefiable soils: a review. Geotechnics 1, 460–491 (2021). https://doi.org/10.3390/geotechnics1020022

    Article  Google Scholar 

  92. Jurinak, J.J.; Summers, L.E.: Oilfield applications of colloidal silica gel. SPE Prod. Eng. 6, 406–412 (1991). https://doi.org/10.2118/18505-pa

    Article  Google Scholar 

  93. Yonekura, R., Kaga, M.: Current chemical grout engineering in Japan. In: grouting, soil improvement and geosynthetics. ASCE, pp. 725–736 (1992). https://cedb.asce.org/CEDBsearch/record.jsp?dockey=0075095

  94. Bennett, K.E., Fitzjohn, J.L., Harmon, R.A., Yates, P.C. Jr.: Colloidal silica-based fluid diversion. European Patent (1988). https://patents.google.com/patent/EP0260888A2/en

  95. Kotresha, K.; Mohammed, S.A.S.; Sanaulla, P.F., et al.: Evaluation of sequential extraction procedure (SEP) to validate binding mechanisms in soils and soil-nano-calcium silicate (SNCS) mixtures. Indian. Geotech. J. 51, 1069–1077 (2021). https://doi.org/10.1007/s40098-020-00464-w

    Article  Google Scholar 

  96. Hareesh, P., Vinoth Kumar, R.: Assessment of nano materials on geotechnical properties of clayey soils. In: Docplayer.net (2016). http://docplayer.net/33577666-Assessment-of-nano-materials-on-geotechnical-properties-of-clayey-soils.html Accessed 16 Dec 2021

  97. Thomas, G.; Rangaswamy, K.: Strengthening of cement blended soft clay with nano-silica particles. Geomech. Eng. 20, 505–516 (2020)

    Google Scholar 

  98. Alireza, T.: Effect of adding nanoclay on the geotechnical behavior of fine-grained soft soils. J. Eng. Geo. 11, 225–246 (2017)

    Google Scholar 

  99. George, A.; Kannan, K.: Potential impact of nanoclay on the Atterberg limits of clayey soil. Int. Res. J. Eng. Technol. 7, 2316–2318 (2020)

    Google Scholar 

  100. Karimiazar, J.; Teshnizi, E.S.; Mirzababaei, M.; Mahdad, M.; Arjmandzadeh, R.: California bearing ratio of a reactive clay treated with nano-additives and cement. J. Mater. Civ. Eng. 34, 1–11 (2022). https://doi.org/10.1061/(ASCE)MT.1943-5533.0004028

    Article  Google Scholar 

  101. Alireza, S.G.S., Mohammad, M.S., Hasan, B.M.: Application of Nanomaterial to Stabilize a Weak Soil. In: International conference on case histories in geotechnical engineering. Vol. 5 (2013). https://scholarsmine.mst.edu/icchge/7icchge/session_06/5

  102. Samala, H.R.; Mir, B.A.: Some studies on microstructural behaviour and unconfned compressive strength of soft soil treated with SiO2 nanoparticles. Innov. Infrastruct. Sol. 5, 1–12 (2020). https://doi.org/10.1007/s41062-020-0283-3

    Article  Google Scholar 

  103. Cheng, G.; Zhu, H.H.; Wen, Y.N.; Shi, B.: Gao, L: Experimental investigation of consolidation properties of nano-bentonite mixed clayey soil. Sustainability. 12, 459 (2020). https://doi.org/10.3390/su12020459

    Article  Google Scholar 

  104. Gallagher, P.M.; Mitchell, J.K.: Influence of colloidal silica grout on liquefaction potential and cyclic undrained behavior of loose sand. Soil. Dyn. Earthq. Eng. 22, 1017–1026 (2002). https://doi.org/10.1016/s0267-7261(02)00126-4

    Article  Google Scholar 

  105. Díaz-Rodríguez, J.A., Antonio–izarraras, V.M.: Mitigation of liquefaction risk using colloidal silica stabilizer. In: Proceedings of the 13th world conference on earthquake engineering, Vancouver, BC, Canada. pp. 1–6 (2004). https://www.iitk.ac.in/nicee/wcee/article/13_509.pdf. Accessed 13 Apr 2022

  106. Díaz-Rodríguez, J.A.; Antonio-Izarraras, V.M.; Bandini, P.; López-Molina, J.A.: Cyclic strength of a natural liquefiable sand stabilized with colloidal silica grout. Can. Geotech. J. 45, 1345–1355 (2008). https://doi.org/10.1139/t08-072

    Article  Google Scholar 

  107. Kodaka, T., Oka, F., Ohno, Y., Takyu, T., Yamasaki, N.: Modeling of cyclic deformation and strength characteristics of silica treated sand. In: Geomechanics. American Society of Civil Engineers, Reston, VA. pp. 205–216 (2005). https://doi.org/10.1061/40797(172)11

  108. Ghasabkolaei, N.; Janalizadeh, A.; Jahanshahi, M.; Roshan, N.; Ghasemi, S.E.: Physical and geotechnical properties of cement-treated clayey soil using silica nanoparticles: an experimental study. Eur. Phys. J. Plus. 131, 1–11 (2016). https://doi.org/10.1140/epjp/i2016-16134-3

    Article  Google Scholar 

  109. Tomar, A.; Sharma, T.; Singh, S.: Strength properties and durability of clay soil treated with mixture of nano silica and polypropylene fiber. Mater. Today 26, 3449–3557 (2020). https://doi.org/10.1016/j.matpr.2019.12.239

    Article  Google Scholar 

  110. Sharo, A.A., Alawneh, A.S.: Enhancement of the strength and swelling characteristics of expansive clayey soil using nano-clay material. In: Geo-Chicago 2016. American Society of Civil Engineers, Reston, VA. pp. 451–457 (2016). https://doi.org/10.1061/9780784480120.046

  111. Jiang, P.; Zhou, L.; Zhang, W.; Wang, W.; Li, N.: Unconfined compressive strength and splitting tensile strength of lime soil modified by nano clay and polypropylene fiber. Crystals 12, 285 (2022). https://doi.org/10.3390/cryst12020285

    Article  Google Scholar 

  112. Babaei, A.; Ghazavi, M.; Ganjian, N.: Shear strength parameters of clayey sand treated with cement and nano titanium dioxide. Geotech. Geol. Eng. 40, 133–151 (2022). https://doi.org/10.1007/s10706-021-01881-1

    Article  Google Scholar 

  113. Rajkishore, S.K.: Nanotoxicity at various trophic levels: a review. Biosafety of nanoparticles. Bioscan 8, 975–982 (2013)

    Google Scholar 

  114. Chen, X.; Cen, C.; Tang, Z., et al.: The key role of pH value in the synthesis of titanate nanotubes-loaded manganese oxides as a superior catalyst for the selective catalytic reduction of NO with NH3. J. Nanomater. 2013, 1–7 (2013). https://doi.org/10.1155/2013/871528

    Article  Google Scholar 

  115. Lu, H.; Wang, J.; Stoller, M., et al.: An overview of nanomaterials for water and wastewater treatment. Adv. Mater. Sci. Eng. 2016, 1–10 (2016). https://doi.org/10.1155/2016/4964828

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by the Researchers Supporting Project number (RSP-2021/279), King Saud University, Riyadh, Saudi Arabia. The authors thank the reviewers for their constructive comments, which helped the cause of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arif Ali Baig Moghal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harsh, H., Moghal, A.A.B., Rasheed, R.M. et al. State-of-the-Art Review on the Role and Applicability of Select Nano-Compounds in Geotechnical and Geoenvironmental Applications. Arab J Sci Eng 48, 4149–4173 (2023). https://doi.org/10.1007/s13369-022-07036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-022-07036-5

Keywords

Navigation